o - v

L GLOBAL
= EDITION

i

o,
- .
o -
v . / Sl o S T
- [t o] S MR S i

tarting Out with Python®

FIFTH EDITION

Digital Resources for Students

Your new textbook provides 12-month access to digital resources that may include
VideoNotes (step-by-step video tutorials on programming concepts), source code, and
more. Refer to the preface in the textbook for a detailed list of resources.

Follow the instructions below to register for the Companion Website for Tony Gaddis’s
Starting Out with Python, Fifth Edition, Global Edition.

Go to www.pearsonglobaleditions.com.

Enter the title of your textbook or browse by author name.

Click Companion Website.

Click Register and follow the on-screen instructions to create a login name
and password.

b=

ISSPYT-EMAIL-ALARY-CADET-SOTUN-DENSE

Use the login name and password you created during registration to start using the
online resources that accompany your textbook.

IMPORTANT:

This prepaid subscription does not include access to Pearson MyLab Programming,
which is available at www.myprogramminglab.com for purchase.

This access code can only be used once. This subscription is valid for 12 months upon
activation and is not transferable.

For technical support, go to https://support.pearson.com/getsupport.

http://www.pearsonglobaleditions.com
http://www.myprogramminglab.com
https://support.pearson.com/getsupport

STARTING OUT WITH

PYTHON"

This page is intentionally left blank

STARTING OUT WITH

PYTHON’
‘ FIFTH EDITION

Tony Gaddis

Haywood Community College

Please contact https://support.pearson.com/getsupport/s/ with any queries on this content.

Microsoft and/or its respective suppliers make no representations about the suitability of the information contained in the
documents and related graphics published as part of the services for any purpose. All such documents and related graphics
are provided “as is” without warranty of any kind. Microsoft and/or its respective suppliers hereby disclaim all warranties
and conditions with regard to this information, including all warranties and conditions of merchantability, whether express,
implied or statutory, fitness for a particular purpose, title and non-infringement. In no event shall Microsoft and/or its
respective suppliers be liable for any special, indirect or consequential damages or any damages whatsoever resulting from
loss of use, data or profits, whether in an action of contract, negligence or other tortious action, arising out of or in
connection with the use or performance of information available from the services.

The documents and related graphics contained herein could include technical inaccuracies or typographical errors. Changes
are periodically added to the information herein. Microsoft and/or its respective suppliers may make improvements and/or
changes in the product(s) and/or the program(s) described herein at any time. Partial screen shots may be viewed in full
within the software version specified.

Microsoft®, Windows®, and Excel® are registered trademarks of the Microsoft Corporation in the U.S.A. and other
countries. This book is not sponsored or endorsed by or affiliated with the Microsoft Corporation.

Acknowledgments of third-party content appear on the relevant page, which constitutes an extension of this copyright page.

PEARSON, ALWAYS LEARNING, and MYLAB are exclusive trademarks owned by Pearson Education, Inc. or its affiliates
in the U.S. and/or other countries.

Pearson Education Limited
KAO Two

KAO Park

Hockham Way

Harlow

CM17 9SR

United Kingdom

and Associated Companies throughout the world
Visit us on the World Wide Web at: www.pearsonglobaleditions.com
© Pearson Education Limited 2022

The rights of Tony Gaddis to be identified as the author of this work have been asserted by him in accordance with the
Copyright, Designs and Patents Act 1988.

Authorized adaptation from the United States edition, entitled Starting Out with Python, 5th Edition, ISBN 978-0-13-
592903-2 by Tony Gaddis published by Pearson Education © 2021.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording or otherwise, without either the prior written permission of
the publisher or a license permitting restricted copying in the United Kingdom issued by the Copyright Licensing Agency Ltd,
Saffron House, 6-10 Kirby Street, London EC1N 8TS.

All trademarks used herein are the property of their respective owners. The use of any trademark in this text does not vest in
the author or publisher any trademark ownership rights in such trademarks, nor does the use of such trademarks imply any
affiliation with or endorsement of this book by such owners. For information regarding permissions, request forms, and the
appropriate contacts within the Pearson Education Global Rights and Permissions department, please visit
www.pearsoned.com/permissions.

This eBook may be available as a standalone product or integrated with other Pearson digital products like MyLab and

Mastering. This eBook may or may not include all assets that were part of the print version. The publisher reserves the right
to remove any material in this eBook at any time.

ISBN 10: 1-292-40863-4
ISBN 13: 978-1-292-40863-7
eBook ISBN 13: 978-1-292-40860-6

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

1 21

eBook formatted by B2R Technologies Pvt. Ltd.

https://support.pearson.com/getsupport/s/
http://www.pearsonglobaleditions.com
http://www.pearsoned.com/permissions

OO0 O

O0ooon

10
N
oo
1aag

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8
Chapter 9
Chapter 10
Chapter 11
Chapter 12
Chapter 13
Chapter 14
Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
Appendix F
Appendix G
Appendix H

Contents at a Glance

Preface 13

Introduction to Computers and Programming
Input, Processing, and Output

Decision Structures and Boolean Logic
Repetition Structures

Functions

Files and Exceptions

Lists and Tuples

More About Strings

Dictionaries and Sets

Classes and Object-Oriented Programming
Inheritance

Recursion

GUI Programming

Database Programming

Installing Python

Introduction to IDLE

The ASCII Character Set

Predefined Named Colors

More About the import Statement

Formatting Numeric Output with the format () Function

Installing Modules with the pip Utility
Answers to Checkpoints
Index

Credits

23

53
141
191
241
325
383
453
489
543
605
631
651
739
821
825
833
835
841
845
851
853
875
891

This page is intentionally left blank

40
10000
Oodoood
10
O

- Contents

100

Preface 13
Chapter 1 Introduction to Computers and Programming 23
1.1 Introduction 23
1.2 Hardware and Software 24
1.3 How Computers Store Data 29
1.4 How a Program Works 34
1.5 Using Python 42
Review Questions 46
Chapter 2 Input, Processing, and Output 53
2.1 Designing a Program 53
2.2 Input, Processing, and Output 57
2.3 Displaying Output with the print Function 58
2.4 Comments 61
2.5 Variables 62
2.6 Reading Input from the Keyboard 71
2.7 Performing Calculations 75
2.8 String Concatenation 87
2.9 More About the print Function 89
2.10 Displaying Formatted Output with F-strings 92
2.11 Named Constants 102
2.12 Introduction to Turtle Graphics 103
Review Questions 131
Programming Exercises 136
Chapter 3 Decision Structures and Boolean Logic 141
3.1 The if Statement 141
3.2 The if-else Statement 150
3.3 Comparing Strings 153
3.4 Nested Decision Structures and the if-elif-else Statement 157
3.5 Logical Operators 165
3.6 Boolean Variables 171
3.7 Turtle Graphics: Determining the State of the Turtle 172
Review Questions 180
Programming Exercises 183

Contents

Chapter 4
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

Chapter 5
5.1
5.2
5.3
5.4
5.5
5.6
5.7

5.8
5.9
5.10
5.11

Chapter 6
6.1
6.2
6.3
6.4

Chapter 7
7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11

Repetition Structures

Introduction to Repetition Structures

The while Loop: A Condition-Controlled Loop
The for Loop: A Count-Controlled Loop
Calculating a Running Total

Sentinels

Input Validation Loops

Nested Loops

Turtle Graphics: Using Loops to Draw Designs
Review Questions

Programming Exercises

Functions

Introduction to Functions

Defining and Calling a Void Function
Designing a Program to Use Functions

Local Variables

Passing Arguments to Functions

Global Variables and Global Constants
Introduction to Value-Returning Functions:
Generating Random Numbers

Writing Your Own Value-Returning Functions
The math Module

Storing Functions in Modules

Turtle Graphics: Modularizing Code with Functions
Review Questions

Programming Exercises

Files and Exceptions

Introduction to File Input and Output
Using Loops to Process Files
Processing Records

Exceptions

Review Questions

Programming Exercises

Lists and Tuples

Sequences

Introduction to Lists

List Slicing

Finding Items in Lists with the in Operator
List Methods and Useful Built-in Functions
Copying Lists

Processing Lists

List Comprehensions

Two-Dimensional Lists

Tuples

Plotting List Data with the matplot1ib Package
Review Questions

Programming Exercises

191
191
192
200
211
214
217
222
229
233
235

241
241
244
249
255
258
268

272
283
296
299
305
311
316

325
325
343
350
363
376
380

383
383
383
392
395
397
404
405
419
421
426
428
445
448

Chapter 8
8.1
8.2
8.3

Chapter 9
9.1
9.2
9.3

Chapter 10
10.1
10.2
10.3
10.4

Chapter 11
11.1
11.2

Chapter 12
12.1
12.2
12.3

Chapter 13
13.1
13.2
13.3
13.4
13.5
13.6
13.7
13.8
13.9
13.10

More About Strings

Basic String Operations

String Slicing

Testing, Searching, and Manipulating Strings
Review Questions

Programming Exercises

Dictionaries and Sets
Dictionaries

Sets

Serializing Objects
Review Questions
Programming Exercises

Classes and Object-Oriented Programming

Procedural and Object-Oriented Programming
Classes

Working with Instances

Techniques for Designing Classes

Review Questions

Programming Exercises

Inheritance

Introduction to Inheritance
Polymorphism

Review Questions
Programming Exercises

Recursion

Introduction to Recursion
Problem Solving with Recursion
Examples of Recursive Algorithms
Review Questions

Programming Exercises

GUI Programming

Graphical User Interfaces

Using the tkinter Module

Displaying Text with Label Widgets
Organizing Widgets with Frames
Button Widgets and Info Dialog Boxes
Getting Input with the Entry Widget
Using Labels as Output Fields

Radio Buttons and Check Buttons
Listbox Widgets

Drawing Shapes with the Canvas Widget
Review Questions

Programming Exercises

Contents

453
453
461
465
481
484

489
489
515
528
534
539

543
543
547
564
586
597
600

605
605
620
626
628

631
631
634
638
646
648

651
651
653
657
667
669
673
676
683
690
709
732
735

10 Contents

Chapter 14
14.1
14.2
14.3
14.4
14.5
14.6
14.7
14.8
14.9
14.10
14.11

Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
Appendix F
Appendix G
Appendix H

Database Programming

Database Management Systems

Tables, Rows, and Columns

Opening and Closing a Database Connection with SQLite
Creating and Deleting Tables

Adding Data to a Table

Querying Data with the SQL SELECT Statement
Updating and Deleting Existing Rows

More About Primary Keys

Handling Database Exceptions

CRUD Operations

Relational Data

Review Questions

Programming Exercises

Installing Python
Introduction to IDLE
The ASCII Character Set

Predefined Named Colors
More About the import Statement

Formatting Numeric Output with the format () Function

Installing Modules with the pip Utility
Answers to Checkpoints

Index

Credits

739
739
741
745
748
753
760
775
782
785
788
796
8§12
818

821
825
833
835
841
845
851
853
875
891

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Chapter 10

Chapter 11
Chapter 12
Chapter 13

Chapter 14

Appendix B

LOCATION OF VIDEONOTES IN THE TEXT [)

Using Interactive Mode in IDLE, p. 45
Performing Exercise 2, p. 50

The print Function, p. 58

Reading Input from the Keyboard, p. 71
Introduction to Turtle Graphics, p. 103
The Sales Prediction Problem, p. 136

The if Statement, p. 141
The if-else Statement, p. 150
The Areas of Rectangles Problem, p. 183

The while Loop, p. 192
The for Loop, p. 200
The Bug Collector Problem, p. 235

Defining and Calling a Function, p. 244
Passing Arguments to a Function, p. 258
Writing a Value-Returning Function, p. 283
The Kilometer Converter Problem, p. 316
The Feet to Inches Problem, p. 318

Using Loops to Process Files, p. 343
File Display, p. 380

List Slicing, p. 392
The Lottery Number Generator Problem, p. 448

The Vowels and Consonants problem, p. 485

Introduction to Dictionaries, p. 489
Introduction to Sets, p. 515
The Capital Quiz Problem, p. 540

Classes and Objects, p. 547
The Pet class, p. 600

The Person and Customer Classes, p. 629
The Recursive Multiplication Problem, p. 648

Creating a Simple GUI application, p. 657
Responding to Button Clicks, p. 669
The Name and Address Problem, p. 735

Opening and Closing a Database Connection, p. 745
Creating a Table, p. 748

Adding Data to a Table, p. 753

The SELECT Statement, p. 761

Updating Rows, p. 775

Getting Started with the Population Database Problem, p. 818

Introduction to IDLE, p. 825

This page is intentionally left blank

|

1[0
OO
OO0
100
100

(I
1obooag
ooooao

Preface

Welcome to Starting Out with Python, Fifth Edition. This book uses the Python language
to teach programming concepts and problem-solving skills, without assuming any previous
programming experience. With easy-to-understand examples, pseudocode, flowcharts, and
other tools, the student learns how to design the logic of programs then implement those
programs using Python. This book is ideal for an introductory programming course or a
programming logic and design course using Python as the language.

As with all the books in the Starting Out With series, the hallmark of this text is its clear,
friendly, and easy-to-understand writing. In addition, it is rich in example programs that
are concise and practical. The programs in this book include short examples that highlight
specific programming topics, as well as more involved examples that focus on problem solv-
ing. Each chapter provides one or more case studies that provide step-by-step analysis of a
specific problem and shows the student how to solve it.

Control Structures First, Then Classes

Python is a fully object-oriented programming language, but students do not have to under-
stand object-oriented concepts to start programming in Python. This text first introduces the
student to the fundamentals of data storage, input and output, control structures, functions,
sequences and lists, file I/O, and objects that are created from standard library classes. Then
the student learns to write classes, explores the topics of inheritance and polymorphism, and
learns to write recursive functions. Finally, the student learns to develop simple event-driven
GUI applications.

Changes in the Fifth Edition

This book’s clear writing style remains the same as in the previous edition. However, many
additions and improvements have been made, which are summarized here:

e Database Programming — This edition adds a new chapter on database programming.
Chapter 14 introduces the student to SQL and Python database programming with
SQLite.

e Comprehension Expressions — This edition introduces and explains list comprehen-
sions, dictionary comprehensions, and set comprehensions.

13

14

Preface

e Updated String Topics — Several new string topics have been added. For example:

o Throughout the text, this edition uses f-strings, which were introduced in Python
3.6, to display formatted output. F-strings use a concise and intuitive syntax and
are easier to learn than the format function. The previous material on the format
function has been moved to Appendix F.

o A new discussion of string tokens has been added to Chapter 8.

o A new example of reading and parsing CSV files has been added to Chapter 8.

o The discussion of string concatenation in Chapter 2 has been expanded to include
implicit concatenation of adjacent strings.

e GUI Programming — Several new GUI programming topics have been added to
Chapter 13, including:
o adding borders to widgets
o internal and external padding
o Tistbox widgets and scrollbars

e Turtle Graphics — Two commands for reading user input with dialog boxes have been
introduced:
o turtle.numinput
o turtle.textinput

e Random List Element Selection — The random.choice() function is introduced in
Chapter 7 as a way to randomly select list elements.

e New Function Topics — Several new topics have been added to Chapter 5. For example:
o The pass keyword is introduced.
o Expanded discussion of the value None, and why a function might return None.
o This edition adopts the standard practice of conditionally executing the main function.

Brief Overview of Each Chapter

Chapter 1: Introduction to Computers and Programming

This chapter begins by giving a very concrete and easy-to-understand explanation of how
computers work, how data is stored and manipulated, and why we write programs in high-
level languages. An introduction to Python, interactive mode, script mode, and the IDLE
environment are also given.

Chapter 2: Input, Processing, and Output

This chapter introduces the program development cycle, variables, data types, and simple
programs that are written as sequence structures. The student learns to write simple programs
that read input from the keyboard, perform mathematical operations, and produce formatted
screen output. Pseudocode and flowcharts are also introduced as tools for designing programs.
The chapter also includes an optional introduction to the turtle graphics library.

Chapter 3: Decision Structures and Boolean Logic

In this chapter, the student learns about relational operators and Boolean expressions and is
shown how to control the flow of a program with decision structures. The if, if-else, and

Preface

if-e1if-else statements are covered. Nested decision structures and logical operators are
discussed as well. The chapter also includes an optional turtle graphics section, with a discus-
sion of how to use decision structures to test the state of the turtle.

Chapter 4: Repetition Structures

This chapter shows the student how to create repetition structures using the while loop and
for loop. Counters, accumulators, running totals, and sentinels are discussed, as well as
techniques for writing input validation loops. The chapter also includes an optional section
on using loops to draw designs with the turtle graphics library.

Chapter 5: Functions

In this chapter, the student first learns how to write and call void functions. The chapter
shows the benefits of using functions to modularize programs and discusses the top-down
design approach. Then, the student learns to pass arguments to functions. Common library
functions, such as those for generating random numbers, are discussed. After learning how
to call library functions and use their return value, the student learns to define and call his
or her own functions. Then the student learns how to use modules to organize functions. An
optional section includes a discussion of modularizing turtle graphics code with functions.

Chapter 6: Files and Exceptions

This chapter introduces sequential file input and output. The student learns to read and write
large sets of data and store data as fields and records. The chapter concludes by discussing
exceptions and shows the student how to write exception-handling code.

Chapter 7: Lists and Tuples

This chapter introduces the student to the concept of a sequence in Python and explores the
use of two common Python sequences: lists and tuples. The student learns to use lists for
arraylike operations, such as storing objects in a list, iterating over a list, searching for
items in a list, and calculating the sum and average of items in a list. The chapter discusses
list comprehension expressions, slicing, and many of the list methods. One- and two-
dimensional lists are covered. The chapter also includes a discussion of the matplotlib
package, and how to use it to plot charts and graphs from lists.

Chapter 8: More About Strings

In this chapter, the student learns to process strings at a detailed level. String slicing and
algorithms that step through the individual characters in a string are discussed, and several
built-in functions and string methods for character and text processing are introduced. This
chapter also includes examples of string tokenizing and parsing CSV files.

Chapter 9: Dictionaries and Sets

This chapter introduces the dictionary and set data structures. The student learns to store
data as key-value pairs in dictionaries, search for values, change existing values, add new

15

16

Preface

key-value pairs, delete key-value pairs, and write dictionary comprehensions. The student
learns to store values as unique elements in sets and perform common set operations such
as union, intersection, difference, and symmetric difference. Set comprehensions are also
introduced. The chapter concludes with a discussion of object serialization and introduces
the student to the Python pickle module.

Chapter 10: Classes and Object-Oriented Programming

This chapter compares procedural and object-oriented programming practices. It covers the
fundamental concepts of classes and objects. Attributes, methods, encapsulation and data
hiding, __init__ functions (which are similar to constructors), accessors, and mutators are
discussed. The student learns how to model classes with UML and how to find the classes
in a particular problem.

Chapter 11: Inheritance

The study of classes continues in this chapter with the subjects of inheritance and polymor-
phism. The topics covered include superclasses, subclasses, how __init__ functions work in
inheritance, method overriding, and polymorphism.

Chapter 12: Recursion

This chapter discusses recursion and its use in problem solving. A visual trace of recursive calls
is provided, and recursive applications are discussed. Recursive algorithms for many tasks are
presented, such as finding factorials, finding a greatest common denominator (GCD), and sum-
ming a range of values in a list, and the classic Towers of Hanoi example are presented.

Chapter 13: GUI Programming

This chapter discusses the basic aspects of designing a GUI application using the tkinter
module in Python. Fundamental widgets, such as labels, buttons, entry fields, radio buttons,
check buttons, list boxes, and dialog boxes, are covered. The student also learns how events
work in a GUI application and how to write callback functions to handle events. The chapter
includes a discussion of the Canvas widget, and how to use it to draw lines, rectangles, ovals,
arcs, polygons, and text.

Chapter 14: Database Programming

This chapter introduces the student to database programming. The chapter first introduces the
basic concepts of databases, such as tables, rows, and primary keys. Then the student learns to
use SQLite to connect to a database in Python. SQL is introduced and the student learns to
execute queries and statements that search for rows, add new rows, update existing rows, and
delete rows. CRUD applications are demonstrated, and the chapter concludes with a discussion
of relational data.

Appendix A: Installing Python

This appendix explains how to download and install the latest Python distribution.

Preface 17

Appendix B: Introduction to IDLE

This appendix gives an overview of the IDLE integrated development environment that comes
with Python.

Appendix C: The ASCII Character Set

As a reference, this appendix lists the ASCII character set.

Appendix D: Predefined Named Colors

This appendix lists the predefined color names that can be used with the turtle graphics
library, matplot1ib and tkinter.

Appendix E: More About the import Statement

This appendix discusses various ways to use the import statement. For example, you can use
the import statement to import a module, a class, a function, or to assign an alias to a module.

Appendix F: Formatting Numeric Output with the format () Function

This appendix discusses the format () function and shows how to use its format specifiers to
control the way that numeric values are displayed.

Appendix G: Installing Modules with the pip Utility

This appendix discusses how to use the pip utility to install third-party modules from the
Python Package Index, or PyPL

Appendix H: Answers to Checkpoints

This appendix gives the answers to the Checkpoint questions that appear throughout the text.

Organization of the Text

The text teaches programming in a step-by-step manner. Each chapter covers a major set of
topics and builds knowledge as students progress through the book. Although the chapters
can be easily taught in their existing sequence, you do have some flexibility in the order
that you wish to cover them. Figure P-1 shows chapter dependencies. Each box represents
a chapter or a group of chapters. An arrow points from a chapter to the chapter that must
be covered before it.

18

Preface

Figure P-1

Chapter dependencies

Chapters 1-5
(Cover in Order)

A

Chapter 6
Files and Exceptions

Chapter 8 Chapter 12
More About Strings Recursion

T

Chapter 7
Lists and Tuples

T

Dictionaries and Sets Database Programming

Chapter 9 Chapter 14

Classes and Object- Chapter 14 includes
Oriented Programming one example that uses

—

Chaptert0 | ...

T a GUI interface.

Chapter 11
Inheritance

Chapter 13 -
GUI Programming

Features of the Text

-
D

Concept
Statements

Example Programs

In the Spotlight
Case Studies

VideoNotes

Each major section of the text starts with a concept statement.
This statement concisely summarizes the main point of the section.

Each chapter has an abundant number of complete and partial
example programs, each designed to highlight the current topic.

Each chapter has one or more In the Spotlight case studies that
provide detailed, step-by-step analysis of problems and show
the student how to solve them.

Online videos developed specifically for this book are avail-
able for viewing at www.pearsonglobaleditions.com. Icons appear
throughout the text alerting the student to videos about specific
topics.

http://www.pearsonglobaleditions.com

Yo2 O

Preface

Notes Notes appear at several places throughout the text. They are
short explanations of interesting or often misunderstood points
relevant to the topic at hand.

Tips Tips advise the student on the best techniques for approaching
different programming problems.

Warnings Warnings caution students about programming techniques or
practices that can lead to malfunctioning programs or lost data.

Checkpoints Checkpoints are questions placed at intervals throughout
each chapter. They are designed to query the student’s
knowledge quickly after learning a new topic.

Review Questions Each chapter presents a thorough and diverse set of review
questions and exercises. They include Multiple Choice, True/
False, Algorithm Workbench, and Short Answer.

Programming Each chapter offers a pool of programming exercises designed
Exercises to solidify the student’s knowledge of the topics currently being
studied.
Supplements

Student Online Resources

Many student resources are available for this book from the publisher. The follow-
ing items can be found on the Premium Companion Website of the book available at
www.pearsonglobaleditions.com.

e The source code for each example program in the book
o Access to the book’s companion VideoNotes

Instructor Resources

The following supplements are available to qualified instructors only:

Answers to all of the Review Questions
Solutions for the Programming Exercises
PowerPoint presentation slides for each chapter
Test bank

Visit the Pearson Education Instructor Resource Center (www.pearsonglobaleditions.com) or
contact your local Pearson Education campus representative for information on how to access
them.

Acknowledgments

I would like to thank the following faculty reviewers for their insight, expertise, and thought-
ful recommendations:

Paul Amer John Cavazos

University of Delaware University of Delaware
]arpes A_tlas Desmond K. H. Chun
University of Delaware Chabot Community College
James Carrier Sonya Dennis

Guilford Technical Community College Morehouse College

19

http://www.pearsonglobaleditions.com
http://www.pearsonglobaleditions.com

20

Preface

Barbara Goldner
North Seattle Community College

Paul Gruhn

Manchester Community College
Bob Husson

Craven Community College
Diane Innes

Sandbills Community College
Daniel Jinguji

North Seattle Community College
John Kinuthia

Nazareth College of Rochester
Frank Liu

Sam Houston State University
Gary Marrer

Glendale Community College
Keith Mehl

Chabot College

Shyamal Mitra

University of Texas at Austin
Vince Offenback

North Seattle Community College
Smiljana Petrovic

Tona College

Raymond Pettit

Abilene Christian University

I would like to thank the faculty, staff, and administration at Haywood Community College
for the opportunity to build a career teaching the subjects that I love. I would also like to

Janet Renwick

University of Arkansas—Fort Smith
Haris Ribic

SUNY at Binghamton

Ken Robol

Beaufort Community College
Eric Shaffer

University of Illinois at Urbana-
Champaign

Tom Stokke

University of North Dakota
Anita Sutton

Germanna Community College

Ann Ford Tyson
Florida State University

Karen Ughetta

Virginia Western Community College

Christopher Urban
SUNY Institute of Technology

Nanette Veilleux
Simmons College
Brent Wilson

George Fox University

Linda E Wilson
Texas Lutheran University

thank my family and friends for their support in all of my projects.

It is a great honor to be published by Pearson, and I am extremely fortunate to have Tracy
Johnson as my Editor and Content Manager. She and her colleagues Holly Stark, Erin Sullivan,
Alicia Wilson, Scott Disanno, Carole Snyder, Bob Engelhardt, and Aishwarya Panday have

worked tirelessly to produce and promote this book. Thanks to you all!

Acknowledgments for the Global Edition

Pearson would like to acknowledge and thank the following for the Global Edition:

Contributors
Gregory Baatard
Edith Cowan University

Kenneth Eustace
Charles Sturt University

Reviewers
Ayca Tuzmen Yildirim
Kog¢ University

Preface

About the Author

Tony Gaddis is the principal author of the Starting Out With series of textbooks. Tony has
nearly two decades of experience teaching computer science courses at Haywood Commu-
nity College. He is a highly acclaimed instructor who was previously selected as the North
Carolina Community College “Teacher of the Year” and has received the Teaching Excel-
lence award from the National Institute for Staff and Organizational Development. The
Starting Out with series includes introductory books covering C++, Java™, Visual C#®,
Python®, and App Inventor, all published by Pearson. More information about all these
books can be found at www.pearsonglobaleditions.com.

21

http://www.pearsonglobaleditions.com

Pearson MyLab " -

To improving results

Programming

Through the power of practice and immediate personalized feedback,
MyLab Programming helps improve your students’ performance.

PROGRAMMING PRACTICE

With MyLab Programming, your students will gain first-hand programming
experience in an interactive online environment.

IMMEDIATE, PERSONALIZED FEEDBACK

MyLab Programming automatically detects errors in the logic and syntax of their
code submission and offers targeted hints that enables students to figure out what
went wrong and why.

MyProgramminglab®

GRADUATED COMPLEXITY v TS

... Remarks:
= Youshould use square brackets in thes exercise, to work with the amay

MyLab Programming breaks down programming More Hints:

; » You almost certainky should be using: []
concepts into short, understandable sequences
of exercises. Within each sequence the level and —
sophistication of the exercises increase gradually asibis_iagestons of arracs oo ompertunitics for tmprovement hov
but steadily.

Want More Wints? Click heve

MyProgramminglLab® j

MyProgramminglab - e 7 =

DYNAMIC ROSTER

Students’ submissions are stored in a roster that indicates whether
the submission is correct, how many attempts were made, and the
actual code submissions from each attempt.

PEARSON eTEXT

The Pearson eText gives students access to their textbook anytime, anywhere.

STEP-BY-STEP VIDEONOTE TUTORIALS

These step-by-step video tutorials enhance the programming concepts presented
in select Pearson textbooks.

For more information and titles available with MyLab Programming,

please visit www.myprogramminglab.com.

Copyright © 2021 Pearson Education, Inc. or its affiliate(s). All rights reserved. HELO88173 « 11/15

ALWAYS LEARNING PEARSON

J 0 L
1Oc00n

OoOoOood

10
OO
1000
100
100

1

1.1

\

Introduction to Computers

and Programming

TOPICS
1.1 Introduction 1.4 How a Program Works
1.2 Hardware and Software 1.5 Using Python

1.3 How Computers Store Data

Introduction

Think about some of the different ways that people use computers. In school, students
use computers for tasks such as writing papers, searching for articles, sending email, and
participating in online classes. At work, people use computers to analyze data, make pre-
sentations, conduct business transactions, communicate with customers and coworkers,
control machines in manufacturing facilities, and do many other things. At home, people
use computers for tasks such as paying bills, shopping online, communicating with friends
and family, and playing games. And don’t forget that cell phones, tablets, smart phones,
car navigation systems, and many other devices are computers too. The uses of computers
are almost limitless in our everyday lives.

Computers can perform such a wide variety of tasks because they can be programmed. This
means that computers are not designed to do just one job, but to do any job that their pro-
grams tell them to do. A program is a set of instructions that a computer follows to perform
a task. For example, Figure 1-1 shows screens using Microsoft Word and PowerPoint, two
commonly used programs.

Programs are commonly referred to as software. Software is essential to a computer because
it controls everything the computer does. All of the software that we use to make our com-
puters useful is created by individuals working as programmers or software developers. A
programmer, or software developer, is a person with the training and skills necessary to
design, create, and test computer programs. Computer programming is an exciting and
rewarding career. Today, you will find programmers’ work used in business, medicine, gov-
ernment, law enforcement, agriculture, academics, entertainment, and many other fields.

This book introduces you to the fundamental concepts of computer programming using the
Python language. The Python language is a good choice for beginners because it is easy to learn

23

24 Chapter 1 Introduction to Computers and Programming

Figure 1-1 A word processing program and a presentation program

|
1.2

Autoswve @D [D~ 1) © Documenti . O

file Home Insert Design Layout References Maiings Review View Help Acrobat

o
5 ellme
X | | calibri (Body) ~iz v = 2 o 55! ;
Do rienele | L2 & A | 8| | 255 ey - s sl
Paste 5 i1 Paragraph | Styles | Editing | Createand Share Request | Dictate Change - SwitchRow/ Select Edit Refresh Change

v S|A-2-A-n- AN Adobe PDF Signatures - Colors~ umn Data Data~ Dota ChartType
Clipboard i Font w Adobe Acrobat Voice ~ Chart Layouts Chart Styles Data Type A

_ EERREERS SRR AR R RS R ERRERT e xensmoeeey. 0
14 Howa rogam ot (@]

Concept: A computer’s CPU can only understand instructions that are written in machine
f language. Because people find it very difficult to write entire programs in
- machine language, other programming languages have been invented.

Earlier, we stated that the CPU Is the most important component in a computer because itis
the part of the computer that runs programs. Sometimes the CPU is called the “computer’s
I brain,” and is described as being “smart.” Although these are common metaphors, you should
~ understand that the CPU is not a brain, and it s not smart. The CPU is an electronic device that
is designed to do specific things. In particular, the CPU is designed to perform operations such
as the following:

Reading a piece of data from main memory
Adding two numbers

Subtracting one number from another number
Multiplying two numbers

« Dividing one number by another number

* Moving a piece of data from one memory location to another o S e e

* Determining whether one value is equal to another value
® Andsoforth...

As you can see from this list, the CPU performs simple operations on pieces of data. The CPU

program. A program is nothing more than a lst of instructions that cause the CPU to perform
operations.

Pagelor2 0words [} Drows @ B - ' + 100 | Sigeton [Zwoes JE) 32 @ T -+ + w% @

and programs can be written quickly using it. Python is also a powerful language, popular with
professional software developers. In fact, it has been reported that Python is used by Google,
NASA, YouTube, various game companies, the New York Stock Exchange, and many others.

Before we begin exploring the concepts of programming, you need to understand a few
basic things about computers and how they work. This chapter will build a solid founda-
tion of knowledge that you will continually rely on as you study computer science. First,
we will discuss the physical components of which computers are commonly made. Next, we
will look at how computers store data and execute programs. Finally, you will get a quick
introduction to the software that you will use to write Python programs.

Hardware and Software

1 CONCEPT: The physical devices of which a computer is made are referred to as the

computer’s hardware. The programs that run on a computer are referred
to as software.

Hardware

The term hardware refers to all of the physical devices, or components, of which a computer
is made. A computer is not one single device, but a system of devices that all work toge-
ther. Like the different instruments in a symphony orchestra, each device in a computer
plays its own part.

If you have ever shopped for a computer, you’ve probably seen sales literature listing compo-
nents such as microprocessors, memory, disk drives, video displays, graphics cards, and so on.
Unless you already know a lot about computers, or at least have a friend that does, under-
standing what these different components do might be challenging. As shown in Figure 1-2, a
typical computer system consists of the following major components:

e The central processing unit (CPU)
e Main memory

1.2 Hardware and Software

Figure 1-2 Typical components of a computer system

Feng Yu/Shutterstock

4 i“

N
Aquila/
Shutterstock

\‘%
Chiyacat/

3 — - — - ‘

22

= 2 .

s 8 Central Processing Eé

= 2 i o

== Unit Sn

Zn 7 s 3
S : K

Iko/Shutterstock 5
Output =

Devices

*ﬁ

v
Shutterstock

~J7 .9 = |

Peter Guess/
Shutterstock

Input
. Devices Jocic/Shutterstock
Elkostas/Shutterstock
- > Main Memory »]
(RAM) —
Tkemot/Shutterstock A Second ary StockPhotosArt/Shutterstock

\

Storage Devices

Kastianz/Shutterstock Andre Nitsievsky/Shutterstock.

e Secondary storage devices
e Input devices
e OQutput devices

Let’s take a closer look at each of these components.

The CPU

When a computer is performing the tasks that a program tells it to do, we say that the
computer is running or executing the program. The central processing unit, or CPU, is the
part of a computer that actually runs programs. The CPU is the most important component
in a computer because without it, the computer could not run software.

In the earliest computers, CPUs were huge devices made of electrical and mechanical com-
ponents such as vacuum tubes and switches. Figure 1-3 shows such a device. The two
women in the photo are working with the historic ENTAC computer. The ENTAC, which
is considered by many to be the world’s first programmable electronic computer, was built
in 1945 to calculate artillery ballistic tables for the U.S. Army. This machine, which was
primarily one big CPU, was 8 feet tall, 100 feet long, and weighed 30 tons.

Today, CPUs are small chips known as microprocessors. Figure 1-4 shows a photo of a lab
technician holding a modern microprocessor. In addition to being much smaller than the old
electromechanical CPUs in early computers, microprocessors are also much more powerful.

25

26 Chapter 1 Introduction to Computers and Programming

Figure 1-3 The ENIAC computer

Figure 1-4 A lab technician holds a modern microprocessor

courtesy of U.S. Army Historic Computer Images

AL IEATALA
AUNLITALATA

\§
|

R
AT AV AV ARAUALACAACACAY AN NOCAUACA

ALAURL A0 20 20 AURU U0 AL N

UL

23
e
22

Jrd ¥4
LACICAFSESL
ALl

$00000000000000

000000000000000000¢
‘ 0000000000000000 000!

00000000000000000000
000

20000000000000000

Creativa Images/Shutterstock

1.2 Hardware and Software 27

Main Memory

You can think of main memory as the computer’s work area. This is where the computer
stores a program while the program is running, as well as the data that the program is
working with. For example, suppose you are using a word processing program to write an
essay for one of your classes. While you do this, both the word processing program and the
essay are stored in main memory.

Main memory is commonly known as random-access memory, or RAM. It is called this
because the CPU is able to quickly access data stored at any random location in RAM.
RAM is usually a volatile type of memory that is used only for temporary storage while
a program is running. When the computer is turned off, the contents of RAM are erased.
Inside your computer, RAM is stored in chips, similar to the ones shown in Figure 1-5.

Figure 1-5 Memory chips

Garsya/Shutterstock

Secondary Storage Devices

Secondary storage is a type of memory that can hold data for long periods of time, even
when there is no power to the computer. Programs are normally stored in secondary mem-
ory and loaded into main memory as needed. Important data, such as word processing
documents, payroll data, and inventory records, is saved to secondary storage as well.

The most common type of secondary storage device is the disk drive. A traditional disk
drive stores data by magnetically encoding it onto a spinning circular disk. Solid-state
drives, which store data in solid-state memory, are increasingly becoming popular. A solid-
state drive has no moving parts and operates faster than a traditional disk drive. Most
computers have some sort of secondary storage device, either a traditional disk drive or a
solid-state drive, mounted inside their case. External storage devices, which connect to one
of the computer’s communication ports, are also available. External storage devices can
be used to create backup copies of important data or to move data to another computer.

In addition to external storage devices, many types of devices have been created for copy-
ing data and for moving it to other computers. For example, USB drives are small devices
that plug into the computer’s USB (universal serial bus) port and appear to the system as
a disk drive. These drives do not actually contain a disk, however. They store data in a
special type of memory known as flash memory. USB drives, which are also known as
memory sticks and flash drives, are inexpensive, reliable, and small enough to be carried
in your pocket.

28

Chapter 1 Introduction to Computers and Programming

Input Devices

Input is any data the computer collects from people and from other devices. The com-
ponent that collects the data and sends it to the computer is called an input device.
Common input devices are the keyboard, mouse, touchscreen, scanner, microphone,
and digital camera. Disk drives and optical drives can also be considered input devices,
because programs and data are retrieved from them and loaded into the computer’s
memory.

Output Devices

Output is any data the computer produces for people or for other devices. It might be
a sales report, a list of names, or a graphic image. The data is sent to an output device,
which formats and presents it. Common output devices are video displays and printers.
Disk drives can also be considered output devices because the system sends data to them
in order to be saved.

Software

If a computer is to function, software is not optional. Everything computer does, from the
time you turn the power switch on until you shut the system down, is under the control
of software. There are two general categories of software: system software and application
software. Most computer programs clearly fit into one of these two categories. Let’s take a
closer look at each.

System Software

The programs that control and manage the basic operations of a computer are generally
referred to as system software. System software typically includes the following types of
programs:

Operating Systems An operating system is the most fundamental set of programs on
a computer. The operating system controls the internal operations of the computer’s
hardware, manages all of the devices connected to the computer, allows data to be
saved to and retrieved from storage devices, and allows other programs to run on
the computer. Popular operating systems for laptop and desktop computers include
Windows, macOS, and Linux. Popular operating systems for mobile devices include
Android and iOS.

Utility Programs A utility program performs a specialized task that enhances the com-
puter’s operation or safeguards data. Examples of utility programs are virus scanners,
file compression programs, and data backup programs.

Software Development Tools Software development tools are the programs that pro-
grammers use to create, modify, and test software. Assemblers, compilers, and interpret-
ers are examples of programs that fall into this category.

—
1.3

1.3 How Computers Store Data

Application Software

Programs that make a computer useful for everyday tasks are known as application soft-
ware. These are the programs that people normally spend most of their time running on
their computers. Figure 1-1, at the beginning of this chapter, shows screens from two com-
monly used applications: Microsoft Word, a word processing program, and PowerPoint, a
presentation program. Some other examples of application software are spreadsheet pro-
grams, email programs, web browsers, and game programs.

Checkpoint

1.1 What is a program?

1.2 What is hardware?

1.3 List the five major components of a computer system.
1.4 What part of the computer actually runs programs?

1.5 What part of the computer serves as a work area to store a program and its data
while the program is running?

1.6 What part of the computer holds data for long periods of time, even when there is
no power to the computer?

1.7 What part of the computer collects data from people and from other devices?

1.8 What part of the computer formats and presents data for people or other
devices?

1.9 What fundamental set of programs control the internal operations of the
computer’s hardware?

1.10 What do you call a program that performs a specialized task, such as a virus
scanner, a file compression program, or a data backup program?

1.11 Word processing programs, spreadsheet programs, email programs, web browsers,
and game programs belong to what category of software?

How Computers Store Data

1 CONCEPT: All data that is stored in a computer is converted to sequences of Os

and 1s.

A computer’s memory is divided into tiny storage locations known as bytes. One byte is
only enough memory to store a letter of the alphabet or a small number. In order to do
anything meaningful, a computer has to have lots of bytes. Most computers today have
millions, or even billions, of bytes of memory.

Each byte is divided into eight smaller storage locations known as bits. The term bit
stands for binary digit. Computer scientists usually think of bits as tiny switches that can
be either on or off. Bits aren’t actual “switches,” however, at least not in the conventional

29

30 Chapter 1 Introduction to Computers and Programming

sense. In most computer systems, bits are tiny electrical components that can hold either a
positive or a negative charge. Computer scientists think of a positive charge as a switch in
the on position, and a negative charge as a switch in the off position. Figure 1-6 shows the
way that a computer scientist might think of a byte of memory: as a collection of switches
that are each flipped to either the on or off position.

Figure 1-6 Think of a byte as eight switches

When a piece of data is stored in a byte, the computer sets the eight bits to an on/
off pattern that represents the data. For example, the pattern on the left in Figure 1-7
shows how the number 77 would be stored in a byte, and the pattern on the right shows
how the letter A would be stored in a byte. We explain below how these patterns are
determined.

Figure 1-7 Bit patterns for the number 77 and the letter A

. o8 o . .
PligedoeoligetioeeeedC
e oo . e e eee

The number 77 stored in a byte. The letter A stored in a byte.

Storing Numbers

A bit can be used in a very limited way to represent numbers. Depending on whether the bit
is turned on or off, it can represent one of two different values. In computer systems, a bit
that is turned off represents the number 0, and a bit that is turned on represents the num-
ber 1. This corresponds perfectly to the binary numbering system. In the binary numbering
system (or binary, as it is usually called), all numeric values are written as sequences of Os
and 1s. Here is an example of a number that is written in binary:

10011101

1.3 How Computers Store Data

The position of each digit in a binary number has a value assigned to it. Starting with
the rightmost digit and moving left, the position values are 2°, 21, 22, 23 and so forth, as
shown in Figure 1-8. Figure 1-9 shows the same diagram with the position values calcu-

lated. Starting with the rightmost digit and moving left, the position values are 1, 2, 4, 8,
and so forth.

Figure 1-8 The values of binary digits as powers of 2

10011101

T

23
24
25
26
27

Figure 1-9 The values of binary digits

10011101

THTTLE S

To determine the value of a binary number, you simply add up the position values of all the
1s. For example, in the binary number 10011101, the position values of the 1s are 1, 4, 8,
16, and 128. This is shown in Figure 1-10. The sum of all of these position values is 157.
So, the value of the binary number 10011101 is 157.

Figure 1-10 Determining the value of 10011101

10011101

-

— oA

128
1+4+8+16+128 =157

31

32 Chapter 1 Introduction to Computers and Programming

Figure 1-11 shows how you can picture the number 157 stored in a byte of memory. Each
1 is represented by a bit in the on position, and each 0 is represented by a bit in the off
position.

Figure 1-11 The bit pattern for 157

Position
values

128 +16+8+4 +1 =157

When all of the bits in a byte are set to 0 (turned off), then the value of the byte is 0. When
all of the bits in a byte are set to 1 (turned on), then the byte holds the largest value that
can be stored in it. The largest value that can be stored in a byteis 1 +2 +4 + 8 + 16 +
32 + 64 + 128 = 255. This limit exists because there are only eight bits in a byte.

What if you need to store a number larger than 255? The answer is simple: use more than
one byte. For example, suppose we put two bytes together. That gives us 16 bits. The posi-
tion values of those 16 bits would be 2°, 21, 2%, 23, and so forth, up through 21°. As shown
in Figure 1-12, the maximum value that can be stored in two bytes is 65,535. If you need
to store a number larger than this, then more bytes are necessary.

Figure 1-12 Two bytes used for a large number

Position
values

32768 + 16384 + 8192 + 4096 + 2048 + 1024 + 512 + 256 + 128 + 64 + 32+ 16 + 8 + 4 + 2 + 1 = 65535

n\

4 TIP: In case you're feeling overwhelmed by all this, relax! You will not have to actu-
ally convert numbers to binary while programming. Knowing that this process is taking
place inside the computer will help you as you learn, and in the long term this knowl-
edge will make you a better programmer.

1.3 How Computers Store Data

Storing Characters

Any piece of data that is stored in a computer’s memory must be stored as a binary num-
ber. That includes characters, such as letters and punctuation marks. When a character is
stored in memory, it is first converted to a numeric code. The numeric code is then stored
in memory as a binary number.

Over the years, different coding schemes have been developed to represent characters in
computer memory. Historically, the most important of these coding schemes is ASCII,
which stands for the American Standard Code for Information Interchange. ASCII is a set
of 128 numeric codes that represent the English letters, various punctuation marks, and
other characters. For example, the ASCII code for the uppercase letter A is 65. When you
type an uppercase A on your computer keyboard, the number 635 is stored in memory (as
a binary number, of course). This is shown in Figure 1-13.

Figure 1-13 The letter A is stored in memory as the number 65

A —-es—ERICIONIR

TIP: The acronym ASCII is pronounced “askee.”

T

In case you are curious, the ASCII code for uppercase B is 66, for uppercase C is 67, and so
forth. Appendix C shows all of the ASCII codes and the characters they represent.

The ASCII character set was developed in the early 1960s and was eventually adopted by
almost all computer manufacturers. ASCII is limited, however, because it defines codes for
only 128 characters. To remedy this, the Unicode character set was developed in the early
1990s. Unicode is an extensive encoding scheme that is compatible with ASCII, but can
also represent characters for many of the languages in the world. Today, Unicode is quickly
becoming the standard character set used in the computer industry.

Advanced Number Storage

Earlier, you read about numbers and how they are stored in memory. While reading that
section, perhaps it occurred to you that the binary numbering system can be used to repre-
sent only integer numbers, beginning with 0. Negative numbers and real numbers (such as
3.14159) cannot be represented using the simple binary numbering technique we discussed.

Computers are able to store negative numbers and real numbers in memory, but to do so
they use encoding schemes along with the binary numbering system. Negative numbers are
encoded using a technique known as two’s complement, and real numbers are encoded in
floating-point notation. You don’t need to know how these encoding schemes work, only
that they are used to convert negative numbers and real numbers to binary format.

34

Chapter 1 Introduction to Computers and Programming

Other Types of Data

Computers are often referred to as digital devices. The term digital can be used to describe
anything that uses binary numbers. Digital data is data that is stored in binary format, and
a digital device is any device that works with binary data. In this section, we have discussed
how numbers and characters are stored in binary, but computers also work with many
other types of digital data.

For example, consider the pictures that you take with your digital camera. These images
are composed of tiny dots of color known as pixels. (The term pixel stands for picture
element.) As shown in Figure 1-14, each pixel in an image is converted to a numeric code
that represents the pixel’s color. The numeric code is stored in memory as a binary number.

Figure 1-14 A digital image is stored in binary format

—
1.4

Jupiterimages/Getty Images

The music that you stream from an online source, or play on an MP3 player is also digital.
A digital song is broken into small pieces known as samples. Each sample is converted to
a binary number, which can be stored in memory. The more samples that a song is divided
into, the more it sounds like the original music when it is played back. For example, a
CD quality song is divided into more than 44,000 samples per second!

Checkpoint

1.12 'What amount of memory is enough to store a letter of the alphabet or a small
number?

1.13 What do you call a tiny “switch” that can be set to either on or off?
1.14 In what numbering system are all numeric values written as sequences of Os and 1s?
1.15 What is the purpose of ASCII?

1.16 What encoding scheme is extensive enough to represent the characters of many of
the languages in the world?

1.17 What do the terms “digital data” and “digital device” mean?

How a Program Works

1 CONCEPT: A computer’s CPU can only understand instructions that are written in

machine language. Because people find it very difficult to write entire
programs in machine language, other programming languages have been
invented.

1.4 How a Program Works

Earlier, we stated that the CPU is the most important component in a computer because it is
the part of the computer that runs programs. Sometimes the CPU is called the “computer’s
brain” and is described as being “smart.” Although these are common metaphors, you
should understand that the CPU is not a brain, and it is not smart. The CPU is an electronic
device that is designed to do specific things. In particular, the CPU is designed to perform
operations such as the following:

¢ Reading a piece of data from main memory

¢ Adding two numbers

e Subtracting one number from another number

e Multiplying two numbers

* Dividing one number by another number

* Moving a piece of data from one memory location to another
® Determining whether one value is equal to another value

As you can see from this list, the CPU performs simple operations on pieces of data. The
CPU does nothing on its own, however. It has to be told what to do, and that’s the purpose
of a program. A program is nothing more than a list of instructions that cause the CPU to
perform operations.

Each instruction in a program is a command that tells the CPU to perform a specific opera-
tion. Here’s an example of an instruction that might appear in a program:

10110000

To you and me, this is only a series of Os and 1s. To a CPU, however, this is an instruction
to perform an operation.! It is written in Os and 1s because CPUs only understand instruc-
tions that are written in machine language, and machine language instructions always have
an underlying binary structure.

A machine language instruction exists for each operation that a CPU is capable of perform-
ing. For example, there is an instruction for adding numbers, there is an instruction for
subtracting one number from another, and so forth. The entire set of instructions that a
CPU can execute is known as the CPU’s instruction set.

NOTE: There are several microprocessor companies today that manufacture CPUs.
Some of the more well-known microprocessor companies are Intel, AMD, and Motorola.
If you look carefully at your computer, you might find a tag showing a logo for its
MICrOpProcessor.

Each brand of microprocessor has its own unique instruction set, which is typically
understood only by microprocessors of the same brand. For example, Intel micropro-
cessors understand the same instructions, but they do not understand instructions for
Motorola microprocessors.

!'The example shown is an actual instruction for an Intel microprocessor. It tells the microprocessor
to move a value into the CPU.

35

36

Chapter 1 Introduction to Computers and Programming

The machine language instruction that was previously shown is an example of only one
instruction. It takes a lot more than one instruction, however, for the computer to do any-
thing meaningful. Because the operations that a CPU knows how to perform are so basic in
nature, a meaningful task can be accomplished only if the CPU performs many operations.
For example, if you want your computer to calculate the amount of interest that you will
earn from your savings account this year, the CPU will have to perform a large number of
instructions, carried out in the proper sequence. It is not unusual for a program to contain
thousands or even millions of machine language instructions.

Programs are usually stored on a secondary storage device such as a disk drive. When you
install a program on your computer, the program is typically downloaded from a website,
or installed from an online app store.

Although a program can be stored on a secondary storage device such as a disk drive,
it has to be copied into main memory, or RAM, each time the CPU executes it. For
example, suppose you have a word processing program on your computer’s disk. To
execute the program, you use the mouse to double-click the program’s icon. This causes
the program to be copied from the disk into main memory. Then, the computer’s CPU
executes the copy of the program that is in main memory. This process is illustrated in
Figure 1-15.

Figure 1-15 A program is copied into main memory and then executed

The program is copied 10100001 10111000 10011110

The CPU executes
from secondary storage the program in
to main memory. maig mgemory

Main memory
CPU

When a CPU executes the instructions in a program, it is engaged in a process that is known
as the fetch-decode-execute cycle. This cycle, which consists of three steps, is repeated for
each instruction in the program. The steps are:

Disk drive

1. Fetch. A program is a long sequence of machine language instructions. The first step
of the cycle is to fetch, or read, the next instruction from memory into the CPU.

2. Decode. A machine language instruction is a binary number that represents a com-
mand that tells the CPU to perform an operation. In this step, the CPU decodes
the instruction that was just fetched from memory, to determine which operation it
should perform.

3. Execute. The last step in the cycle is to execute, or perform, the operation.

Figure 1-16 illustrates these steps.

1.4 How a Program Works 37

Figure 1-16 The fetch-decode-execute cycle

10100001))

Fetch the next instruction

in the program.
10100001
10111000 Decode the instruction
10011110 to determine which
00011010 operation to perform.
11011100
and so forth... CPU

Execute the instruction
(perform the operation).

Main memory
(RAM)

From Machine Language to Assembly Language

Computers can only execute programs that are written in machine language. As previously
mentioned, a program can have thousands or even millions of binary instructions, and writ-
ing such a program would be very tedious and time consuming. Programming in machine
language would also be very difficult, because putting a 0 or a 1 in the wrong place will
cause an error.

Although a computer’s CPU only understands machine language, it is impractical for people
to write programs in machine language. For this reason, assembly language was created in
the early days of computing? as an alternative to machine language. Instead of using binary
numbers for instructions, assembly language uses short words that are known as mnemon-
ics. For example, in assembly language, the mnemonic add typically means to add numbers,
mul typically means to multiply numbers, and mov typically means to move a value to a
location in memory. When a programmer uses assembly language to write a program, he
or she can write short mnemonics instead of binary numbers.

0 NOTE: There are many different versions of assembly language. It was mentioned
earlier that each brand of CPU has its own machine language instruction set. Each
brand of CPU typically has its own assembly language as well.

Assembly language programs cannot be executed by the CPU, however. The CPU only
understands machine language, so a special program known as an assembler is used to
translate an assembly language program to a machine language program. This process is
shown in Figure 1-17. The machine language program that is created by the assembler can
then be executed by the CPU.

2 The first assembly language was most likely that developed in the 1940s at Cambridge University
for use with a historic computer known as the EDSAC.

38

Chapter 1 Introduction to Computers and Programming

Figure 1-17 An assembler translates an assembly language program to a machine

language program

Assembly language Machine language
program program
mov eax, Z 10100001
add eax, 2
mov Y, eax 10111000
mmlp- | Assembler |
and so forth... 10011110
and so forth...

High-Level Languages

Although assembly language makes it unnecessary to write binary machine language instruc-
tions, it is not without difficulties. Assembly language is primarily a direct substitute for
machine language, and like machine language, it requires that you know a lot about the
CPU. Assembly language also requires that you write a large number of instructions for even
the simplest program. Because assembly language is so close in nature to machine language,
it is referred to as a low-level language.

In the 1950s, a new generation of programming languages known as high-level languages
began to appear. A high-level language allows you to create powerful and complex pro-
grams without knowing how the CPU works and without writing large numbers of low-level
instructions. In addition, most high-level languages use words that are easy to understand.
For example, if a programmer were using COBOL (which was one of the early high-level
languages created in the 1950s), he or she would write the following instruction to display
the message Hello world on the computer screen:

DISPLAY "Hello world"

Python is a modern, high-level programming language that we will use in this book. In
Python you would display the message Hello world with the following instruction:

print('Hello world")

Doing the same thing in assembly language would require several instructions and an inti-
mate knowledge of how the CPU interacts with the computer’s output device. As you can see
from this example, high-level languages allow programmers to concentrate on the tasks they
want to perform with their programs, rather than the details of how the CPU will execute
those programs.

Since the 1950s, thousands of high-level languages have been created. Table 1-1 lists several
of the more well-known languages.

Keywords, Operators, and Syntax: An Overview

Each high-level language has its own set of predefined words that the programmer must
use to write a program. The words that make up a high-level programming language are
known as keywords or reserved words. Each keyword has a specific meaning, and cannot
be used for any other purpose. Table 1-2 shows all of the Python keywords.

1.4 How a Program Works

Table 1-1 Programming languages

Language Description

Ada Ada was created in the 1970s, primarily for applications used by the U.S.
Department of Defense. The language is named in honor of Countess Ada
Lovelace, an influential and historic figure in the field of computing.

BASIC Beginners All-purpose Symbolic Instruction Code is a general-purpose language
that was originally designed in the early 1960s to be simple enough for beginners
to learn. Today, there are many different versions of BASIC.

FORTRAN FORmula TRANslator was the first high-level programming language. It was
designed in the 1950s for performing complex mathematical calculations.

COBOL Common Business-Oriented Language was created in the 1950s and was designed
for business applications.

Pascal Pascal was created in 1970 and was originally designed for teaching programming.
The language was named in honor of the mathematician, physicist, and philosopher
Blaise Pascal.

Cand C++ Cand C++ (pronounced “c plus plus”) are powerful, general-purpose languages
developed at Bell Laboratories. The C language was created in 1972, and the
C++ language was created in 1983.

C# Pronounced “c sharp.” This language was created by Microsoft around the year
2000 for developing applications based on the Microsoft .NET platform.

Java Java was created by Sun Microsystems in the early 1990s. It can be used to develop
programs that run on a single computer or over the Internet from a web server.

JavaScript JavaScript, created in the 1990s, can be used in Web pages. Despite its name,
JavaScript is not related to Java.

Python Python, the language we use in this book, is a general-purpose language created
in the early 1990s. It has become popular in business and academic applications.

Ruby Ruby is a general-purpose language that was created in the 1990s. It is increas-

Visual Basic

ingly becoming a popular language for programs that run on Web servers.

Visual Basic (commonly known as VB) is a Microsoft programming language and
software development environment that allows programmers to create Windows-
based applications quickly. VB was originally created in the early 1990s.

Table 1-2 The Python keywords

and

as
assert
async
await
break

class

continue finally is raise
def for lambda return
del from None True
elif global nonlocal try
else if not while
except import or with

False in pass yield

39

40

Chapter

Figure

1 Introduction to Computers and Programming

In addition to keywords, programming languages have operators that perform various
operations on data. For example, all programming languages have math operators that
perform arithmetic. In Python, as well as most other languages, the + sign is an operator
that adds two numbers. The following adds 12 and 75:

12 + 75

There are numerous other operators in the Python language, many of which you will learn
about as you progress through this text.

In addition to keywords and operators, each language also has its own syntax, which is a
set of rules that must be strictly followed when writing a program. The syntax rules dictate
how keywords, operators, and various punctuation characters must be used in a program.
When you are learning a programming language, you must learn the syntax rules for that
particular language.

The individual instructions that you use to write a program in a high-level programming
language are called statements. A programming statement can consist of keywords, oper-
ators, punctuation, and other allowable programming elements, arranged in the proper
sequence to perform an operation.

Compilers and Interpreters

Because the CPU understands only machine language instructions, programs that are writ-
ten in a high-level language must be translated into machine language. Depending on the
language in which a program has been written, the programmer will use either a compiler
or an interpreter to make the translation.

A compiler is a program that translates a high-level language program into a separate
machine language program. The machine language program can then be executed any time
it is needed. This is shown in Figure 1-18. As shown in the figure, compiling and executing
are two different processes.

1-18 Compiling a high-level program and executing it

®

O

High-level language Machine language
program program
The compiler is used print ("Hello 10100001
to translate the high-level Earthling") 10111000
language program to a 9" —| Compiler | —3= | 0
machine language program. and so forth... and so forth...

Machine language
program

CPU
The machine language 10100001
program can be executed 10111000 —
at any time, without using 10011110
the compiler.

and so forth...

1.4 How a Program Works

The Python language uses an interpreter, which is a program that both translates and
executes the instructions in a high-level language program. As the interpreter reads
each individual instruction in the program, it converts it to machine language instruc-
tions then immediately executes them. This process repeats for every instruction in
the program. This process is illustrated in Figure 1-19. Because interpreters combine
translation and execution, they typically do not create separate machine language
programs.

Figure 1-19 Executing a high-level program with an interpreter

High-level language
program Machine language

CPU
rint ("Hello instruction
Earth(ling") —P»| Interpreter | —J= 10100001 —J
and so forth... A ’

The interpreter translates each high-level instruction to
its equivalent machine language instructions then
immediately executes them.

This process is repeated for each high-level instruction.

The statements that a programmer writes in a high-level language are called source
code, or simply code. Typically, the programmer types a program’s code into a text
editor then saves the code in a file on the computer’s disk. Next, the programmer uses
a compiler to translate the code into a machine language program, or an interpreter
to translate and execute the code. If the code contains a syntax error, however, it can-
not be translated. A syntax error is a mistake such as a misspelled keyword, a missing
punctuation character, or the incorrect use of an operator. When this happens, the
compiler or interpreter displays an error message indicating that the program contains
a syntax error. The programmer corrects the error then attempts once again to translate
the program.

0 NOTE: Human languages also have syntax rules. Do you remember when you took
your first English class, and you learned all those rules about commas, apostrophes,
capitalization, and so forth? You were learning the syntax of the English language.

Although people commonly violate the syntax rules of their native language when
speaking and writing, other people usually understand what they mean. Unfortunately,
compilers and interpreters do not have this ability. If even a single syntax error appears
in a program, the program cannot be compiled or executed. When an interpreter
encounters a syntax error, it stops executing the program.

41

42

Chapter 1 Introduction to Computers and Programming

'/ Checkpoint

—
1.5

1.18 A CPU understands instructions that are written only in what language?

1.19 A program has to be copied into what type of memory each time the CPU
executes it?

1.20 When a CPU executes the instructions in a program, it is engaged in what process?
1.21 What is assembly language?

1.22 What type of programming language allows you to create powerful and complex
programs without knowing how the CPU works?

1.23 Each language has a set of rules that must be strictly followed when writing a
program. What is this set of rules called?

1.24 What do you call a program that translates a high-level language program into a
separate machine language program?

1.25 What do you call a program that both translates and executes the instructions in
a high-level language program?

1.26 What type of mistake is usually caused by a misspelled keyword, a missing
punctuation character, or the incorrect use of an operator?

Using Python

1 CONCEPT: The Python interpreter can run Python programs that are saved in files

or interactively execute Python statements that are typed at the keyboard.
Python comes with a program named IDLE that simplifies the process of
writing, executing, and testing programs.

Installing Python

Before you can try any of the programs shown in this book, or write any programs of your
own, you need to make sure that Python is installed on your computer and properly con-
figured. If you are working in a computer lab, this has probably been done already. If you
are using your own computer, you can follow the instructions in Appendix A to download
and install Python.

The Python Interpreter

You learned earlier that Python is an interpreted language. When you install the Python
language on your computer, one of the items that is installed is the Python interpreter. The
Python interpreter is a program that can read Python programming statements and execute
them. (Sometimes, we will refer to the Python interpreter simply as the interpreter.)

You can use the interpreter in two modes: interactive mode and script mode. In interac-
tive mode, the interpreter waits for you to type Python statements on the keyboard. Once
you type a statement, the interpreter executes it and then waits for you to type another
statement. In script mode, the interpreter reads the contents of a file that contains Python
statements. Such a file is known as a Python program or a Python script. The interpreter
executes each statement in the Python program as it reads it.

1.5 Using Python

Interactive Mode

Once Python has been installed and set up on your system, you start the interpreter in
interactive mode by going to the operating system’s command line and typing the follow-
ing command:

python

If you are using Windows, you can alternatively type python in the Windows search box.
In the search results, you will see a program named something like Python 3.5. (The “3.5”
is the version of Python that is installed. At the time this is being written, Python 3.5 is
the latest version.) Clicking this item will start the Python interpreter in interactive mode.

NOTE: When the Python interpreter is running in interactive mode, it is commonly
called the Python shell.

When the Python interpreter starts in interactive mode, you will see something like the fol-
lowing displayed in a console window:

Python 3.7.4 (tags/v3.7.4:e09359112e, Jul 8 2019, 19:29:22)
[MSC v.1916 32 bit (Intel)] on win32

Type "help", "copyright", "credits" or "license"
for more information.
>>>

The >>> that you see is a prompt that indicates the interpreter is waiting for you to type
a Python statement. Let’s try it out. One of the simplest things that you can do in Python
is print a message on the screen. For example, the following statement prints the message
Python programming is fun! on the screen:

print('Python programming is fun!")

You can think of this as a command that you are sending to the Python interpreter. If
you type the statement exactly as it is shown, the message Python programming is fun! is
printed on the screen. Here is an example of how you type this statement at the interpreter’s
prompt:

>>> print('Python programming is fun!")

After typing the statement, you press the Enter key, and the Python interpreter executes the
statement, as shown here:

>>> print('Python programming is fun!')
Python programming is fun!
>>>

43

44

Chapter 1 Introduction to Computers and Programming

After the message is displayed, the >>> prompt appears again, indicating the interpreter is
waiting for you to enter another statement. Let’s look at another example. In the following
sample session, we have entered two statements:

>>> print('To be or not to be')
To be or not to be
>>> print('That is the question.')

That is the question.
>>>

If you incorrectly type a statement in interactive mode, the interpreter will display an error
message. This will make interactive mode useful to you while you learn Python. As you
learn new parts of the Python language, you can try them out in interactive mode and get
immediate feedback from the interpreter.

To quit the Python interpreter in interactive mode on a Windows computer, press Ctrl-Z
(pressing both keys together) followed by Enter. On a Mac, Linux, or UNIX computer,
press Ctrl-D.

NOTE: In Chapter 2, we will discuss the details of statements like the ones previously
shown. If you want to try them now in interactive mode, make sure you type them exactly
as shown.

Writing Python Programs and Running
Them in Script Mode

Although interactive mode is useful for testing code, the statements that you enter in interac-
tive mode are not saved as a program. They are simply executed and their results displayed on
the screen. If you want to save a set of Python statements as a program, you save those state-
ments in a file. Then, to execute the program, you use the Python interpreter in script mode.

For example, suppose you want to write a Python program that displays the following three
lines of text:

Nudge nudge
Wink wink
Know what I mean?

To write the program you would use a simple text editor like Notepad (which is installed
on all Windows computers) to create a file containing the following statements:

print('Nudge nudge')
print('Wink wink")
print('Know what I mean?')

NOTE: Itis possible to use a word processor to create a Python program, but you must
be sure to save the program as a plain text file. Otherwise, the Python interpreter will
not be able to read its contents.

VideoNote
Using
Interactive
Mode in IDLE

1.5 Using Python

When you save a Python program, you give it a name that ends with the .py extension,
which identifies it as a Python program. For example, you might save the program previ-
ously shown with the name test.py. To run the program, you would go to the directory
in which the file is saved and type the following command at the operating system com-
mand line:

python test.py

This starts the Python interpreter in script mode and causes it to execute the statements in
the file test.py. When the program finishes executing, the Python interpreter exits.

The IDLE Programming Environment

The previous sections described how the Python interpreter can be started in interactive
mode or script mode at the operating system command line. As an alternative, you can use
an integrated development environment, which is a single program that gives you all of the
tools you need to write, execute, and test a program.

Recent versions of Python include a program named IDLE, which is automatically
installed when the Python language is installed. (IDLE stands for Integrated DeveLopment
Environment.) When you run IDLE, the window shown in Figure 1-20 appears. Notice
the >>> prompt appears in the IDLE window, indicating that the interpreter is running in
interactive mode. You can type Python statements at this prompt and see them executed in
the IDLE window.

IDLE also has a built-in text editor with features specifically designed to help you write
Python programs. For example, the IDLE editor “colorizes” code so keywords and other

Figure 1-20 IDLE

B python 2.7.4 Shell
File Edit Shell Debug Options Window Help

Python 3.7.4 (tags/v3.7.4:209359112e, Jul & 2019, 19:29:22) [M5C wv.1916
32 bit (Intel)}] on win32

Type "help”™, "copyright™, "credits™ or "license ()™ for more information.
>335 |

Ln:3 Col4

45

46 Chapter 1 Introduction to Computers and Programming

<&

parts of a program are displayed in their own distinct colors. This helps make programs
easier to read. In IDLE, you can write programs, save them to disk, and execute them.
Appendix B provides a quick introduction to IDLE and leads you through the process
of creating, saving, and executing a Python program.

NOTE: Although IDLE is installed with Python, there are several other Python IDEs
available. Your instructor might prefer that you use a specific one in class.

Review Questions
Multiple Choice

1. A(n) is a set of instructions that a computer follows to perform a task.
a. compiler
b. program
c. Interpreter
d. programming language
2. The physical devices that a computer is made of are referred to as
a. hardware
b. software
c. the operating system
d. tools

3. The part of a computer that runs programs is called
a. RAM
b. secondary storage
C. main memory
e. the CPU

4. Today, CPUs are small chips known as
a. ENIACs
b. microprocessors
¢. memory chips
d. operating systems

5. The computer stores a program while the program is running, as well as the data that
the program is working with, in
a. secondary storage
b. the CPU
¢. main memory
d. the microprocessor

6. This is a volatile type of memory that is used only for temporary storage while a pro-
gram is running.
a. RAM
b. secondary storage
c. the disk drive
d. the USB drive

10.

11.

12.

13.

14.

Review Questions

A type of memory that can hold data for long periods of time, even when there is no
power to the computer, is called

a. RAM

b. main memory

c. secondary storage

d. CPU storage

. A component that collects data from people or other devices and sends it to the com-

puter is called

a. an output device

b. an input device

c. a secondary storage device
d. main memory

. A video display is a(n) device.

a. output

b. input

c. secondary storage
d. main memory
A

is enough memory to store a letter of the alphabet or a small number.

d. transistor

A byte is made up of eight
a. CPUs

b. instructions

c. variables

d. bits

In the numbering system, all numeric values are written as sequences of Os
and 1s.

a. hexadecimal

b. binary

c. octal

d. decimal

A bit that is turned off represents the following value:
a. 1

b. -1

c. 0

d. “no”

A set of 128 numeric codes that represent the English letters, various punctuation
marks, and other characters is

a. binary numbering

b. ASCII

¢. Unicode

d. ENIAC

47

48

Chapter 1

15

16.

17.

18.

19.

20.

21.

22.

Introduction to Computers and Programming

. An extensive encoding scheme that can represent characters for many languages in the
world is
a. binary numbering
b. ASCII
c. Unicode
d. ENIAC

Negative numbers are encoded using the technique.
a. two’s complement

b. floating point

c. ASCII

d. Unicode

Real numbers are encoded using the technique.
a. two’s complement

b. floating point

c. ASCII

d. Unicode

The tiny dots of color that digital images are composed of are called
a. bits

b. bytes

c. color packets

d. pixels

If you were to look at a machine language program, you would see
a. Python code

b. a stream of binary numbers

c. English words

d. circuits

In the part of the fetch-decode-execute cycle, the CPU determines which
operation it should perform.

a. fetch

b. decode

c. execute

d. deconstruct

Computers can only execute programs that are written in
a. Java

b. assembly language

c. machine language

d. Python

The translates an assembly language program to a machine language
program.

a. assembler

b. compiler

c. translator

d. interpreter

23.

24.

25.

Review Questions

The words that make up a high-level programming language are called
a. binary instructions

b. mnemonics

¢. commands

d. keywords

The rules that must be followed when writing a program are called
a. syntax

b. punctuation

c. keywords

d. operators

A(n) program translates a high-level language program into a separate
machine language program.

a. assembler

b. compiler

c. translator

d. utility

True or False

1.

(O8]

Ny =5

Today, CPUs are huge devices made of electrical and mechanical components such as
vacuum tubes and switches.

Main memory is also known as RAM.

Any piece of data that is stored in a computer’s memory must be stored as a binary
number.

Images, like the ones created with your digital camera, cannot be stored as binary numbers.
Machine language is the only language that a CPU understands.
Assembly language is considered a high-level language.

An interpreter is a program that both translates and executes the instructions in a high-
level language program.

8. A syntax error does not prevent a program from being compiled and executed.

9.
10.

Windows, Linux, Android, i0S, and macOS are all examples of application software.

Word processing programs, spreadsheet programs, email programs, web browsers,
and games are all examples of utility programs.

Short Answer

1.

How does the main memory and the secondary storage of a computer differ from each
other?

. What number does a bit that is turned on represent? What number does a bit that is

turned off represent?

How many different characters can be represented in ASCII? Name the character set
that addresses this limitation.

. What is an individual instruction in a program written in a high-level programming

language called?

. What are the short words that are used in assembly language called?

6. What is the difference between a compiler and an interpreter?

What type of software controls the internal operations of the computer’s hardware?

49

50

>

VideoNote

Performing
Exercise 2

Chapter 1 Introduction to Computers and Programming

Exercises

1. To make sure that you can interact with the Python interpreter, try the following steps
on your computer:

Start the Python interpreter in interactive mode.
At the >>> prompt, type the following statement then press Enter:

print('This is a test of the Python interpreter.')

After pressing the Enter key, the interpreter will execute the statement. If you typed
everything correctly, your session should look like this:

>>> print('This is a test of the Python interpreter.')
This is a test of the Python interpreter.
>>>

If you see an error message, enter the statement again, and make sure you type it
exactly as shown.

Exit the Python interpreter. (In Windows, press Ctrl-Z followed by Enter. On other
systems, press Ctrl-D.)

2. To make sure that you can interact with IDLE, try the following steps on your computer:

Start IDLE. To do this in Windows, type IDLE in the Windows search box. Click
the IDLE desktop app, which will be displayed in the search results.

When IDLE starts, it should appear similar to the window previously shown in
Figure 1-20. At the >>> prompt, type the following statement then press Enter:

print('This is a test of IDLE.')

After pressing the Enter key, the Python interpreter will execute the statement. If you
typed everything correctly, your session should look like this:

>>> print('This is a test of IDLE.')
This is a test of IDLE.
>>>

If you see an error message, enter the statement again and make sure you type it
exactly as shown.
Exit IDLE by clicking File, then Exit (or pressing Ctrl-Q on the keyboard).

3. Use what you have learned about the binary numbering system in this chapter to
convert the following decimal numbers to binary:

14
87

128
254

4. Use what you have learned about the binary numbering system in this chapter to con-
vert the following binary numbers to decimal:

101
1111

110010

Review Questions

. Look at the ASCII chart in Appendix C and determine the code of the first printable
character (a space), the “A” character, and the “a” character.

. Use the Internet to research the history of the Python programming language, and
answer the following questions:

e Who is the creator of Python, and what does his title of “BDFL” mean?

e What is “The Zen of Python”?

e In which year was the first version of Python 3 released, and in which year was the
final version of Python 2 released?

51

This page is intentionally left blank

Ooo
0000
OO0Oooao
00O
OO
100

il and Output

Input, Processing,

TOPICS

2.1 Designing a Program 2.7 Performing Calculations

2.2 Input, Processing, and Output 2.8 String Concatenation

2.3 Displaying Output with the print 2.9 More About the print Function
Function 2.10 Displaying Formatted Output

2.4 Comments with F-strings

2.5 \Variables 2.11 Named Constants

2.6 Reading Input from the Keyboard 2.12 Introduction to Turtle Graphics

=
2.1 Designing a Program
1 CONCEPT: Programs must be carefully designed before they are written. During

the design process, programmers use tools such as pseudocode and
flowcharts to create models of programs.

The Program Development Cycle

In Chapter 1, you learned that programmers typically use high-level languages such as
Python to create programs. There is much more to creating a program than writing code,
however. The process of creating a program that works correctly typically requires the five
phases shown in Figure 2-1. The entire process is known as the program development cycle.

Figure 2-1 The program development cycle

Design the _ | Write the _| Correct | Testthe _| Correct
program o code " | syntax errors ~| program | logic errors _‘

Let’s take a closer look at each stage in the cycle.

1. Design the Program. All professional programmers will tell you that a program should
be carefully designed before the code is actually written. When programmers begin a

53

54

Chapter 2 Input, Processing, and Output

new project, they should never jump right in and start writing code as the first step.
They start by creating a design of the program. There are several ways to design a
program, and later in this section, we will discuss some techniques that you can use
to design your Python programs.

2. Write the Code. After designing the program, the programmer begins writing code
in a high-level language such as Python. Recall from Chapter 1 that each language
has its own rules, known as syntax, that must be followed when writing a program.
A language’s syntax rules dictate things such as how keywords, operators, and punc-
tuation characters can be used. A syntax error occurs if the programmer violates any
of these rules.

3. Correct Syntax Errors. If the program contains a syntax error, or even a simple mis-
take such as a misspelled keyword, the compiler or interpreter will display an error
message indicating what the error is. Virtually all code contains syntax errors when
it is first written, so the programmer will typically spend some time correcting these.
Once all of the syntax errors and simple typing mistakes have been corrected, the pro-
gram can be compiled and translated into a machine language program (or executed
by an interpreter, depending on the language being used).

4. Test the Program. Once the code is in an executable form, it is then tested to deter-
mine whether any logic errors exist. A logic error is a mistake that does not prevent
the program from running, but causes it to produce incorrect results. (Mathematical
mistakes are common causes of logic errors.)

5. Correct Logic Errors. If the program produces incorrect results, the programmer
debugs the code. This means that the programmer finds and corrects logic errors in the
program. Sometimes during this process, the programmer discovers that the program’s
original design must be changed. In this event, the program development cycle starts
over and continues until no errors can be found.

More About the Design Process

The process of designing a program is arguably the most important part of the cycle. You
can think of a program’s design as its foundation. If you build a house on a poorly con-
structed foundation, eventually you will find yourself doing a lot of work to fix the house!
A program’s design should be viewed no differently. If your program is designed poorly,
eventually you will find yourself doing a lot of work to fix the program.

The process of designing a program can be summarized in the following two steps:

1. Understand the task that the program is to perform.
2. Determine the steps that must be taken to perform the task.

Let’s take a closer look at each of these steps.

Understand the Task That the Program Is to Perform

It is essential that you understand what a program is supposed to do before you can deter-
mine the steps that the program will perform. Typically, a professional programmer gains
this understanding by working directly with the customer. We use the term customer to
describe the person, group, or organization that is asking you to write a program. This could
be a customer in the traditional sense of the word, meaning someone who is paying you to
write a program. It could also be your boss, or the manager of a department within your
company. Regardless of whom it is, the customer will be relying on your program to perform
an important task.

"

2.1 Designing a Program

To get a sense of what a program is supposed to do, the programmer usually interviews the
customer. During the interview, the customer will describe the task that the program should
perform, and the programmer will ask questions to uncover as many details as possible about
the task. A follow-up interview is usually needed because customers rarely mention everything
they want during the initial meeting, and programmers often think of additional questions.

The programmer studies the information that was gathered from the customer during the inter-
views and creates a list of different software requirements. A software requirement is simply a
single task that the program must perform in order to satisfy the customer. Once the customer
agrees that the list of requirements is complete, the programmer can move to the next phase.

TIP: If you choose to become a professional software developer, your customer will be
anyone who asks you to write programs as part of your job. As long as you are a student,
however, your customer is your instructor! In every programming class that you will
take, it’s practically guaranteed that your instructor will assign programming problems
for you to complete. For your academic success, make sure that you understand your
instructor’s requirements for those assignments and write your programs accordingly.

Determine the Steps That Must Be Taken
to Perform the Task

Once you understand the task that the program will perform, you begin by breaking down
the task into a series of steps. This is similar to the way you would break down a task into
a series of steps that another person can follow. For example, suppose someone asks you
how to boil water. You might break down that task into a series of steps as follows:

1.

Pour the desired amount of water into a pot.

2. Put the pot on a stove burner.
3.
4. Watch the water until you see large bubbles rapidly rising. When this happens, the

Turn the burner to high.

water is boiling.

This is an example of an algorithm, which is a set of well-defined logical steps that must be
taken to perform a task. Notice the steps in this algorithm are sequentially ordered. Step 1
should be performed before step 2, and so on. If a person follows these steps exactly as they
appear, and in the correct order, he or she should be able to boil water successfully.

A programmer breaks down the task that a program must perform in a similar way. An
algorithm is created, which lists all of the logical steps that must be taken. For example,
suppose you have been asked to write a program to calculate and display the gross pay for
an hourly paid employee. Here are the steps that you would take:

1.
2.
3.
4.

Get the number of hours worked.

Get the hourly pay rate.

Multiply the number of hours worked by the hourly pay rate.
Display the result of the calculation that was performed in step 3.

Of course, this algorithm isn’t ready to be executed on the computer. The steps in this list
have to be translated into code. Programmers commonly use two tools to help them accom-
plish this: pseudocode and flowcharts. Let’s look at each of these in more detail.

55

56

'/ Checkpoint
2.1

Chapter 2 Input, Processing, and Output

Pseudocode

Because small mistakes like misspelled words and forgotten punctuation characters can cause
syntax errors, programmers have to be mindful of such small details when writing code. For
this reason, programmers find it helpful to write a program in pseudocode (pronounced “sue
doe code”) before they write it in the actual code of a programming language such as Python.

The word “pseudo” means fake, so pseudocode is fake code. It is an informal language
that has no syntax rules and is not meant to be compiled or executed. Instead, program-
mers use pseudocode to create models, or “mock-ups,” of programs. Because programmers
don’t have to worry about syntax errors while writing pseudocode, they can focus all of
their attention on the program’s design. Once a satisfactory design has been created with
pseudocode, the pseudocode can be translated directly to actual code. Here is an example of
how you might write pseudocode for the pay calculating program that we discussed earlier:

Input the hours worked

Input the hourly pay rate

Calculate gross pay as hours worked multiplied by pay rate
Display the gross pay

Each statement in the pseudocode represents an operation that can be performed in Python.
For example, Python can read input that is typed on the keyboard, perform mathematical
calculations, and display messages on the screen.

Flowcharts

Flowcharting is another tool that programmers use to design programs. A flowchart is a
diagram that graphically depicts the steps that take place in a program. Figure 2-2 shows
how you might create a flowchart for the pay calculating program.

Notice there are three types of symbols in the flowchart: ovals, parallelograms, and a rect-
angle. Each of these symbols represents a step in the program, as described here:

¢ The ovals, which appear at the top and bottom of the flowchart, are called terminal
symbols. The Start terminal symbol marks the program’s starting point, and the End
terminal symbol marks the program’s ending point.

e Parallelograms are used as input symbols and output symbols. They represent steps
in which the program reads input or displays output.

e Rectangles are used as processing symbols. They represent steps in which the program
performs some process on data, such as a mathematical calculation.

The symbols are connected by arrows that represent the “flow” of the program. To step
through the symbols in the proper order, you begin at the Start terminal and follow the
arrows until you reach the End terminal.

Who is a programmer’s customer?
2.2 What is a software requirement?
2.3 What is an algorithm?
2.4 What is pseudocode?

2.2 Input, Processing, and Output

Figure 2-2 Flowchart for the pay calculating program

Start

\

Input the hours worked

Y

Input the hourly pay rate

\

Calculate gross pay as
hours worked multiplied
by pay rate

Y

Display the gross pay

End

2.5 What is a flowchart?

2.6 What do each of the following symbols mean in a flowchart?
e Oval

e Parallelogram
® Rectangle

|
2.2 Input, Processing, and Output

1 CONCEPT: Input is data that the program receives. When a program receives data,

it usually processes it by performing some operation with it. The result
of the operation is sent out of the program as output.

Computer programs typically perform the following three-step process:

1. Input is received.
2. Some process is performed on the input.
3. Output is produced.

Input is any data that the program receives while it is running. One common form of input
is data that is typed on the keyboard. Once input is received, some process, such as a

57

58 Chapter 2 Input, Processing, and Output

mathematical calculation, is usually performed on it. The results of the process are then
sent out of the program as output.

Figure 2-3 illustrates these three steps in the pay calculating program that we discussed
earlier. The number of hours worked and the hourly pay rate are provided as input. The
program processes this data by multiplying the hours worked by the hourly pay rate. The
results of the calculation are then displayed on the screen as output.

Figure 2-3 The input, processing, and output of the pay calculating program

Input Process Output

Hours worked »
Multiply hours worked #
by hourly pay rate Gross pay

Hourly pay rate »

In this chapter, we will discuss basic ways that you can perform input, processing, and
output using Python.

2.3 Displaying Output with the print Function

1 CONCEPT: You use the print function to display output in a Python program.

A function is a piece of prewritten code that performs an operation. Python has numerous
a built-in functions that perform various operations. Perhaps the most fundamental built-in
¥:1dee°'::f‘:t function is the print function, which displays output on the screen. Here is an example of
e a statement that executes the print function:

print('Hello world")

In interactive mode, if you type this statement and press the Enter key, the message Hello
world is displayed. Here is an example:

>>> print('Hello world")(Enter)
Hello world
>>>

When programmers execute a function, they say that they are calling the function. When
you call the print function, you type the word print, followed by a set of parentheses.
Inside the parentheses, you type an argument, which is the data that you want displayed
on the screen. In the previous example, the argument is 'Hello world'. Notice the quote
marks are not displayed when the statement executes. The quote marks simply specify the
beginning and the end of the text that you wish to display.

Suppose your instructor tells you to write a program that displays your name and address
on the computer screen. Program 2-1 shows an example of such a program, with the output
that it will produce when it runs. (The line numbers that appear in a program listing in

2.3 Displaying Output with the print Function

this book are not part of the program. We use the line numbers in our discussion to refer
to parts of the program.)

Program 2-1 (output.py)

1

print('Kate Austen')

2 print('123 Full Circle Drive')
3 print('Asheville, NC 28899"')

Program Output

Kate Austen
123 Full Circle Drive
Asheville, NC 28899

It is important to understand that the statements in this program execute in the order that
they appear, from the top of the program to the bottom. When you run this program, the first
statement will execute, followed by the second statement, and followed by the third statement.

Strings and String Literals

Programs almost always work with data of some type. For example, Program 2-1 uses the
following three pieces of data:

'Kate Austen'
'123 Full Circle Drive
'Asheville, NC 28899'

These pieces of data are sequences of characters. In programming terms, a sequence of char-
acters that is used as data is called a string. When a string appears in the actual code of a pro-
gram, it is called a string literal. In Python code, string literals must be enclosed in quote marks.
As mentioned earlier, the quote marks simply mark where the string data begins and ends.

In Python, you can enclose string literals in a set of single-quote marks (') or a set of
double-quote marks ("). The string literals in Program 2-1 are enclosed in single-quote
marks, but the program could also be written as shown in Program 2-2.

Program 2-2 (double_quotes.py)

1

print("Kate Austen")

2 print("123 Full Circle Drive")
3 print("Asheville, NC 28899")

Program Output

Kate Austen
123 Full Circle Drive
Asheville, NC 28899

59

60 Chapter 2 Input, Processing, and Output

If you want a string literal to contain either a single-quote or an apostrophe as part of the
string, you can enclose the string literal in double-quote marks. For example, Program 2-3
prints two strings that contain apostrophes.

Program 2-3 (apostrophe.py)

1 print("Don't fear!")
2 print("I'm here!")

Program Output

Don't fear!
I'm here!

Likewise, you can use single-quote marks to enclose a string literal that contains double-
quotes as part of the string. Program 2-4 shows an example.

Program 2-4 (display_quote.py)
1 print('Your assignment is to read "Hamlet" by tomorrow.')

Program Output
Your assignment is to read "Hamlet" by tomorrow.

Python also allows you to enclose string literals in triple quotes (either or). Triple-
quoted strings can contain both single quotes and double quotes as part of the string. The
following statement shows an example:

print("""I'm reading "Hamlet" tonight.""")
This statement will print
I'm reading "Hamlet" tonight.

Triple quotes can also be used to surround multiline strings, something for which single and
double quotes cannot be used. Here is an example:

print("""One
Two
Threell nn)

This statement will print

One
Two
Three

2.4 Comments

'/ Checkpoint
2.7 Write a statement that displays your name.
2.8 Write a statement that displays the following text:
Python's the best!
2.9 Write a statement that displays the following text:
The cat said "meow."

=
2.4 Comments

1 CONCEPT: Comments are notes of explanation that document lines or sections of a
program. Comments are part of the program, but the Python interpreter
ignores them. They are intended for people who may be reading the
source code.

Comments are short notes placed in different parts of a program, explaining how those
parts of the program work. Although comments are a critical part of a program, they are
ignored by the Python interpreter. Comments are intended for any person reading a pro-
gram’s code, not the computer.

In Python, you begin a comment with the # character. When the Python interpreter sees a
character, it ignores everything from that character to the end of the line. For example,
look at Program 2-5. Lines 1 and 2 are comments that briefly explain the program’s
purpose.

Program 2-5 (comment1.py)

This program displays a person's
name and address.

print('Kate Austen')

print('123 Full Circle Drive")
print('Asheville, NC 28899")

a pr N

Program Output

Kate Austen
123 Full Circle Drive
Asheville, NC 28899

Programmers commonly write end-line comments in their code. An end-line comment is a
comment that appears at the end of a line of code. It usually explains the statement that
appears in that line. Program 2-6 shows an example. Each line ends with a comment that
briefly explains what the line does.

61

62 Chapter 2 Input, Processing, and Output

Program 2-6 (comment2.py)

1

print('Kate Austen') # Display the name.

2 print('123 Full Circle Drive') # Display the address.
3 print('Asheville, NC 28899") # Display the city, state, and ZIP.

Program Output

Kate

Austen

123 Full Circle Drive
Asheville, NC 28899

—
2.5
-t

As a beginning programmer, you might be resistant to the idea of liberally writing com-
ments in your programs. After all, it can seem more productive to write code that actually
does something! It is crucial that you take the extra time to write comments, however. They
will almost certainly save you and others time in the future when you have to modify or
debug the program. Large and complex programs can be almost impossible to read and
understand if they are not properly commented.

Variables

CONCEPT: A variable is a name that represents a storage location in the computer’s
memory.

Programs usually store data in the computer’s memory and perform operations on that
data. For example, consider the typical online shopping experience: you browse a website
and add the items that you want to purchase to the shopping cart. As you add items to
the shopping cart, data about those items is stored in memory. Then, when you click the
checkout button, a program running on the website’s computer calculates the cost of all the
items you have in your shopping cart, applicable sales taxes, shipping costs, and the total
of all these charges. When the program performs these calculations, it stores the results in
the computer’s memory.

Programs use variables to store data in memory. A variable is a name that represents a
value in the computer’s memory. For example, a program that calculates the sales tax on
a purchase might use the variable name tax to represent that value in memory. And a
program that calculates the distance between two cities might use the variable name
distance to represent that value in memory. When a variable represents a value in the
computer’s memory, we say that the variable references the value.

Creating Variables with Assignment Statements

You use an assignment statement to create a variable and make it reference a piece of data.
Here is an example of an assignment statement:

age = 25

2.5 Variables 63

After this statement executes, a variable named age will be created, and it will reference the
value 25. This concept is shown in Figure 2-4. In the figure, think of the value 25 as being
stored somewhere in the computer’s memory. The arrow that points from age to the value
25 indicates that the variable name age references the value.

Figure 2-4 The age variable references the value 25

age ——»[25]

An assignment statement is written in the following general format:
variable = expression

The equal sign (=) is known as the assignment operator. In the general format, variable
is the name of a variable and expression is a value, or any piece of code that results in a
value. After an assignment statement executes, the variable listed on the left side of the =
operator will reference the value given on the right side of the = operator.

To experiment with variables, you can type assignment statements in interactive mode, as
shown here:

>>> width = 10
>>> length = 5

>>>

The first statement creates a variable named width and assigns it the value 10. The second
statement creates a variable named Tength and assigns it the value 5. Next, you can use the
print function to display the values referenced by these variables, as shown here:

>>> print(width)

10

>>> print(length)
5

>>>

When you pass a variable as an argument to the print function, you do not enclose the vari-
able name in quote marks. To demonstrate why, look at the following interactive session:

>>> print('width')

width

>>> print(width)
10

>>>

In the first statement, we passed 'width' as an argument to the print function, and the
function printed the string width. In the second statement, we passed width (with no quote
marks) as an argument to the print function, and the function displayed the value refer-
enced by the width variable.

64

Chapter 2 Input, Processing, and Output

In an assignment statement, the variable that is receiving the assignment must appear on the
left side of the = operator. As shown in the following interactive session, an error occurs if
the item on the left side of the = operator is not a variable:

>>> 25 = age
SyntaxError: can't assign to Tliteral
>>>

The code in Program 2-7 demonstrates a variable. Line 2 creates a variable named room and
assigns it the value 503. The statements in lines 3 and 4 display a message. Notice line 4
displays the value that is referenced by the room variable.

Program 2-7 (variable_demo.py)

This program demonstrates a variable.
room = 503

print('I am staying in room number"')
print(room)

AN

Program Output

I am staying in room number
503

Program 2-8 shows a sample program that uses two variables. Line 2 creates a variable
named top_speed, assigning it the value 160. Line 3 creates a variable named distance,
assigning it the value 300. This is illustrated in Figure 2-5.

Program 2-8 (variable_demo2.py)

Create two variables: top_speed and distance.
top_speed = 160
distance = 300

Display the values referenced by the variables.
print('The top speed is')

print(top_speed)

print('The distance traveled is')

print(distance)

© o NGO~ wWN =

Program Output

The top speed is

160

The distance traveled is
300

2.5 Variables

Figure 2-5 Two variables

L

top_speed ————[160]

distance ———»

WARNING! You cannot use a variable until you have assigned a value to it. An error
will occur if you try to perform an operation on a variable, such as printing it, before
it has been assigned a value.

Sometimes a simple typing mistake will cause this error. One example is a misspelled
variable name, as shown here:

temperature = 74.5 # Create a variable
print(tempereture) # Error! Misspelled variable name

In this code, the variable temperature is created by the assignment statement. The
variable name is spelled differently in the print statement, however, which will cause
an error. Another example is the inconsistent use of uppercase and lowercase letters in
a variable name. Here is an example:

temperature = 74.5 # Create a variable
print(Temperature) # Error! Inconsistent use of case

In this code, the variable temperature (in all lowercase letters) is created by the
assignment statement. In the print statement, the name Temperature is spelled with
an uppercase T. This will cause an error because variable names are case sensitive in
Python.

NOTE: Internally, Python variables work differently than variables in most other
programming languages. In most programming languages, a variable is a memory loca-
tion that holds a value. In those languages, when you assign a value to a variable, the
value is stored in the variable’s memory location.

In Python, however, a variable is a memory location that holds the address of another
memory location. When you assign a value to a Python variable, that value is stored in
a location that is separate from the variable. The variable will hold the address of the
memory location that holds the value. That is why, in Python, instead of saying that a
variable “holds” a value, we say that a variable “references” a variable.

Variable Naming Rules

Although you are allowed to make up your own names for variables, you must follow these
rules:

® You cannot use one of Python’s keywords as a variable name. (See Table 1-2 for a list

of the keywords.)
e A variable name cannot contain spaces.

65

66

Chapter 2 Input, Processing, and Output

e The first character must be one of the letters a through z, A through Z, or an under-
score character (_).

o After the first character you may use the letters a through z or A through Z, the digits
0 through 9, or underscores.

e Uppercase and lowercase characters are distinct. This means the variable name
ItemsOrdered is not the same as itemsordered.

In addition to following these rules, you should always choose names for your variables
that give an indication of what they are used for. For example, a variable that holds the
temperature might be named temperature, and a variable that holds a car’s speed might
be named speed. You may be tempted to give variables names such as x and b2, but names
like these give no clue as to what the variable’s purpose is.

Because a variable’s name should reflect the variable’s purpose, programmers often find
themselves creating names that are made of multiple words. For example, consider the fol-
lowing variable names:

grosspay
payrate
hotdogssoldtoday

Unfortunately, these names are not easily read by the human eye because the words aren’t
separated. Because we can’t have spaces in variable names, we need to find another way
to separate the words in a multiword variable name and make it more readable to the
human eye.

One way to do this is to use the underscore character to represent a space. For example, the
following variable names are easier to read than those previously shown:

gross_pay
pay_rate
hot_dogs_sold_today

This style of naming variables is popular among Python programmers, and is the style we
will use in this book. There are other popular styles, however, such as the camelCase nam-
ing convention. camelCase names are written in the following manner:

e The variable name begins with lowercase letters.
e The first character of the second and subsequent words is written in uppercase.

For example, the following variable names are written in camelCase:

grossPay
payRate
hotDogsSoldToday

NOTE: This style of naming is called camelCase because the uppercase characters
that appear in a name may suggest a camel’s humps.

Table 2-1 lists several sample variable names and indicates whether each is legal or illegal
in Python.

2.5 Variables 67

Table 2-1 Sample variable names

Variable Name Legal or Illegal?

units_per_day Legal

dayOfWeek Legal

3dGraph Illegal. Variable names cannot begin with a digit.

June1997 Legal

Mixture#3 Illegal. Variable names may only use letters, digits, or underscores.

Displaying Multiple Items with the print Function

If you refer to Program 2-7, you will see that we used the following two statements in lines 3
and 4:

print('I am staying in room number')
print(room)

We called the print function twice because we needed to display two pieces of data. Line 3
displays the string literal 'I am staying in room number', and line 4 displays the value
referenced by the room variable.

This program can be simplified, however, because Python allows us to display multiple
items with one call to the print function. We simply have to separate the items with com-
mas as shown in Program 2-9.

Program 2-9 (variable_demo3.py)

1 # This program demonstrates a variable.
2 room = 503
3 print('I am staying in room number', room)

Program Output
I am staying in room number 503

In line 3, we passed two arguments to the print function. The first argument is the string
literal 'I am staying in room number', and the second argument is the room variable.
When the print function executed, it displayed the values of the two arguments in the
order that we passed them to the function. Notice the print function automatically printed
a space separating the two items. When multiple arguments are passed to the print func-
tion, they are automatically separated by a space when they are displayed on the screen.

Variable Reassignment

Variables are called “variable” because they can reference different values while a program
is running. When you assign a value to a variable, the variable will reference that value
until you assign it a different value. For example, look at Program 2-10. The statement in
line 3 creates a variable named do1lars and assigns it the value 2.75. This is shown in
the top part of Figure 2-6. Then, the statement in line 8 assigns a different value, 99.95, to
the do11ars variable. The bottom part of Figure 2-6 shows how this changes the do11ars

68 Chapter 2 Input, Processing, and Output

variable. The old value, 2.75, is still in the computer’s memory, but it can no longer be used
because it isn’t referenced by a variable. When a value in memory is no longer referenced by
a variable, the Python interpreter automatically removes it from memory through a process
known as garbage collection.

Program 2-10 (variable_demo4.py)

This program demonstrates variable reassignment.
Assign a value to the dollars variable.

dollars = 2.75

print('I have', dollars, 'in my account.')

1
2
3
4
5
6 # Reassign dollars so it references

7 # a different value.

8 dollars = 99.95

9 print('But now I have', dollars, 'in my account!"')

Program Output

I have 2.75 in my account.
But now I have 99.95 in my account!

Figure 2-6 Variable reassignment in Program 2-10

The dollars variable after line 3 executes.

dollars —»

The dollars variable after line 8 executes.
dollars
_|—»
Numeric Data Types and Literals

In Chapter 1, we discussed the way that computers store data in memory. (See Section 1.3)
You might recall from that discussion that computers use a different technique for storing
real numbers (numbers with a fractional part) than for storing integers. Not only are these
types of numbers stored differently in memory, but similar operations on them are carried
out in different ways.

Because different types of numbers are stored and manipulated in different ways, Python
uses data types to categorize values in memory. When an integer is stored in memory, it is
classified as an int, and when a real number is stored in memory, it is classified as a f1oat.

Let’s look at how Python determines the data type of a number. Several of the programs
that you have seen so far have numeric data written into their code. For example, the fol-
lowing statement, which appears in Program 2-9, has the number 503 written into it:

room = 503

2.5 Variables

This statement causes the value 503 to be stored in memory, and it makes the room vari-
able reference it. The following statement, which appears in Program 2-10, has the number
2.75 written into it:

dollars = 2.75

This statement causes the value 2.75 to be stored in memory, and it makes the do11ars vari-
able reference it. A number that is written into a program’s code is called a numeric literal.
When the Python interpreter reads a numeric literal in a program’s code, it determines its
data type according to the following rules:

¢ A numeric literal that is written as a whole number with no decimal point is consid-
ered an int. Examples are 7, 124, and -9.

e A numeric literal that is written with a decimal point is considered a f1oat. Examples
are 1.5,3.14159, and 5.0.

So, the following statement causes the number 503 to be stored in memory as an int:
room = 503

And the following statement causes the number 2.75 to be stored in memory as a float:
dollars = 2.75

When you store an item in memory, it is important for you to be aware of the item’s data
type. As you will see, some operations behave differently depending on the type of data
involved, and some operations can only be performed on values of a specific data type.

As an experiment, you can use the built-in type function in interactive mode to determine
the data type of a value. For example, look at the following session:

>>> type(1)
<class 'int'>
>>>

In this example, the value 1 is passed as an argument to the type function. The message
that is displayed on the next line, <class 'int'>, indicates that the value is an int. Here
is another example:

>>> type(1.0)
<class 'float'>
>>>

In this example, the value 1.0 is passed as an argument to the type function. The message
that is displayed on the next line, <class 'float'>, indicates that the value is a f1oat.

WARNING! You cannot write currency symbols, spaces, or commas in numeric
literals. For example, the following statement will cause an error:

value = $4,567.99 # Error!
This statement must be written as:

value = 4567.99 # Correct

69

70

Chapter 2 Input, Processing, and Output

Storing Strings with the str Data Type

In addition to the int and fl1oat data types, Python also has a data type named str, which
is used for storing strings in memory. The code in Program 2-11 shows how strings can be
assigned to variables.

Program 2-11 (string_variable.py)

(S22, BN NSV SR

Create variables to reference two strings.
first_name = 'Kathryn'
last_name = 'Marino’

Display the values referenced by the variables.
print(first_name, last_name)

Program Output

Kathryn Marino

Reassigning a Variable to a Different Type

Keep in mind that in Python, a variable is just a name that refers to a piece of data in
memory. It is a mechanism that makes it easy for you, the programmer, to store and retrieve
data. Internally, the Python interpreter keeps track of the variable names that you create
and the pieces of data to which those variable names refer. Any time you need to retrieve
one of those pieces of data, you simply use the variable name that refers to it.

A variable in Python can refer to items of any type. After a variable has been assigned an
item of one type, it can be reassigned an item of a different type. To demonstrate, look at
the following interactive session. (We have added line numbers for easier reference.)

>>> x = 99

>>> print(x)

99

>>> x = 'Take me to your leader'

>>> print(x)
Take me to your leader
>>>

~NOoO O ON =

The statement in line 1 creates a variable named x and assigns it the int value 99. Figure 2-7
shows how the variable x references the value 99 in memory. The statement in line 2 calls
the print function, passing x as an argument. The output of the print function is shown
in line 3. Then, the statement in line 4 assigns a string to the x variable. After this statement
executes, the x variable no longer refers to an int, but to the string 'Take me to your
leader'. This is shown in Figure 2-8. Line 5 calls the print function again, passing x as an
argument. Line 6 shows the print function’s output.

Figure 2-7 The variable x references an integer

x—»

2.6 Reading Input from the Keyboard

Figure 2-8 The variable x references a string

x
Take me to your leader
'/ Checkpoint

2.10 What is a variable?
2.11 Which of the following are illegal variable names in Python, and why?
X
99bottles
july2009
theSalesFigureForFiscalYear
ré&d
grade_report
2.12 Is the variable name Sales the same as sales? Why or why not?
2.13 TIs the following assignment statement valid or invalid? If it is invalid, why?
72 = amount
2.14 What will the following code display?
val = 99
print('The value is', 'val')

2.15 Look at the following assignment statements:

valuel = 99
value2 = 45.9
valued = 7.0
value4 =7
valueb = 'abc'

After these statements execute, what is the Python data type of the values
referenced by each variable?

2.16 What will be displayed by the following program?

my_value = 99
my_value = 0
print(my_value)

|

2.6 Reading Input from the Keyboard

VideoNote
Reading Input
from the
Keyboard

1 CONCEPT: Programs commonly need to read input typed by the user on the key-
board. We will use the Python functions to do this.

Most of the programs that you will write will need to read input and then perform an
operation on that input. In this section, we will discuss a basic input operation: reading
data that has been typed on the keyboard. When a program reads data from the keyboard,
usually it stores that data in a variable so it can be used later by the program.

71

72

Chapter 2 Input, Processing, and Output

In this book, we use Python’s built-in input function to read input from the keyboard. The
input function reads a piece of data that has been entered at the keyboard and returns that
piece of data, as a string, back to the program. You normally use the input function in an
assignment statement that follows this general format:

variable = input(prompt)

In the general format, prompt is a string that is displayed on the screen. The string’s pur-
pose is to instruct the user to enter a value; variable is the name of a variable that refer-
ences the data that was entered on the keyboard. Here is an example of a statement that
uses the input function to read data from the keyboard:

name = input('What is your name? ')

When this statement executes, the following things happen:

e The string 'What is your name? ' is displayed on the screen.

e The program pauses and waits for the user to type something on the keyboard and
then to press the Enter key.

e When the Enter key is pressed, the data that was typed is returned as a string and
assigned to the name variable.

To demonstrate, look at the following interactive session:

>>> name = input('What is your name? ')
What is your name? Holly

>>> print(name)

Holly

>>>

When the first statement was entered, the interpreter displayed the prompt 'What 1is your
name? ' and waited for the user to enter some data. The user entered Ho11y and pressed the
Enter key. As a result, the string 'Ho11y ' was assigned to the name variable. When the second
statement was entered, the interpreter displayed the value referenced by the name variable.

Program 2-12 shows a complete program that uses the input function to read two strings
as input from the keyboard.

Program 2-12 (string_input.py)

1
2
3
4
5
6
7
8

Get the user's first name.
first_name = input('Enter your first name: ')

Get the user's last name.
last_name = input('Enter your last name: ')

Print a greeting to the user.
print('Hello', first_name, last_name)

Program Output (with input shown in bold)

Enter your first name: Vinny
Enter your last name: Brown
Hello Vinny Brown

2.6 Reading Input from the Keyboard

Take a closer look in line 2 at the string we used as a prompt:
"Enter your first name: '

Notice the last character in the string, inside the quote marks, is a space. The same is true
for the following string, used as prompt in line 5:

'"Enter your Tast name:

We put a space character at the end of each string because the input function does not
automatically display a space after the prompt. When the user begins typing characters,
they appear on the screen immediately after the prompt. Making the last character in the
prompt a space visually separates the prompt from the user’s input on the screen.

Reading Numbers with the input Function

The input function always returns the user’s input as a string, even if the user enters
numeric data. For example, suppose you call the input function, type the number 72, and
press the Enter key. The value that is returned from the input function is the string '72".
This can be a problem if you want to use the value in a math operation. Math operations
can be performed only on numeric values, not strings.

Fortunately, Python has built-in functions that you can use to convert a string to a numeric
type. Table 2-2 summarizes two of these functions.

Table 2-2 Data conversion functions

Function Description

int(7tem) You pass an argument to the int () function and it returns the argument’s
value converted to an int.

float (7tem) You pass an argument to the float () function and it returns the argument’s
value converted to a float.

For example, suppose you are writing a payroll program and you want to get the number
of hours that the user has worked. Look at the following code:

string_value = input('How many hours did you work? ')
hours = int(string_value)

The first statement gets the number of hours from the user and assigns that value as a string
to the string_value variable. The second statement calls the int() function, passing
string_value as an argument. The value referenced by string_value is converted to an
int and assigned to the hours variable.

This example illustrates how the int () function works, but it is inefficient because it cre-
ates two variables: one to hold the string that is returned from the input function, and
another to hold the integer that is returned from the int () function. The following code
shows a better approach. This one statement does all the work that the previously shown
two statements do, and it creates only one variable:

hours = int(input('How many hours did you work? '))

74

Chapter 2 Input, Processing, and Output

This one statement uses nested function calls. The value that is returned from the input
function is passed as an argument to the int () function. This is how it works:

e [t calls the input function to get a value entered at the keyboard.

e The value that is returned from the input function (a string) is passed as an argument
to the int () function.

e The int value that is returned from the int () function is assigned to the hours variable.

After this statement executes, the hours variable is assigned the value entered at the key-
board, converted to an int.

Let’s look at another example. Suppose you want to get the user’s hourly pay rate. The fol-
lowing statement prompts the user to enter that value at the keyboard, converts the value
to a float, and assigns it to the pay_rate variable:

pay_rate = float(input('What is your hourly pay rate? '))
This is how it works:

e It calls the input function to get a value entered at the keyboard.

e The value that is returned from the input function (a string) is passed as an argument
to the float () function.

e The float value that is returned from the float () function is assigned to the pay_
rate variable.

After this statement executes, the pay_rate variable is assigned the value entered at the
keyboard, converted to a float.

Program 2-13 shows a complete program that uses the input function to read a string, an
int, and a float, as input from the keyboard.

Program 2-13 (input.py)

1
2
3
4
5
6
7
8
9
0

1

Get the user's name, age, and income.

name = input('What is your name? ')

age = int(input('What is your age? '))

income = float(input('What is your income? '))

Display the data.
print('Here is the data you entered:"')

print('Name:', name)
print('Age:"', age)
print('Income:", income)

Program Output (with input shown in bold)

What
What
What
Here

Name:

Age:

is your name? Chris [Enter)
is your age? 25 (Enter)

is your income? 75000.0
is the data you entered:
Chris

25

Income: 75000.0

&
/

—
2.7
.t

2.7 Performing Calculations

Let’s take a closer look at the code:

e Line 2 prompts the user to enter his or her name. The value that is entered is assigned,
as a string, to the name variable.

* Line 3 prompts the user to enter his or her age. The value that is entered is converted
to an int and assigned to the age variable.

* Line 4 prompts the user to enter his or her income. The value that is entered is con-
verted to a float and assigned to the income variable.

e Lines 7 through 10 display the values that the user entered.

The int() and float() functions work only if the item that is being converted contains
a valid numeric value. If the argument cannot be converted to the specified data type, an
error known as an exception occurs. An exception is an unexpected error that occurs while
a program is running, causing the program to halt if the error is not properly dealt with.
For example, look at the following interactive mode session:

>>> gge = int(input('What is your age? '))
What is your age? xyz
Traceback (most recent call last):
File "<pyshell#81>", 1ine 1, in <module>
age = int(input('What is your age? '))
ValueError: invalid literal for int() with base 10: 'xyz
>>>

NOTE: In this section, we mentioned the user. The user is simply any hypothetical
person that is using a program and providing input for it. The user is sometimes called
the end user.

Checkpoint

2.17 You need the user of a program to enter a customer’s last name. Write a statement
that prompts the user to enter this data and assigns the input to a variable.

2.18 You need the user of a program to enter the amount of sales for the week. Write a
statement that prompts the user to enter this data and assigns the input to a variable.

Performing Calculations

CONCEPT: Python has numerous operators that can be used to perform mathematical
calculations.

Most real-world algorithms require calculations to be performed. A programmer’s tools
for performing calculations are math operators. Table 2-3 lists the math operators that are
provided by the Python language.

Programmers use the operators shown in Table 2-3 to create math expressions. A math
expression performs a calculation and gives a value. The following is an example of a
simple math expression:

12 + 2

75

76 Chapter 2 Input, Processing, and Output

Table 2-3 Python math operators

Symbol Operation Description

+ Addition Adds two numbers

- Subtraction Subtracts one number from another

* Multiplication Multiplies one number by another

/ Division Divides one number by another and gives the result as
a floating-point number

/1l Integer division Divides one number by another and gives the result as
a whole number

% Remainder Divides one number by another and gives the remainder

** Exponent Raises a number to a power

The values on the right and left of the + operator are called operands. These are values that
the + operator adds together. If you type this expression in interactive mode, you will see
that it gives the value 14:

>>> 12 + 2
14
>>>

Variables may also be used in a math expression. For example, suppose we have two variables
named hours and pay_rate. The following math expression uses the * operator to multiply
the value referenced by the hours variable by the value referenced by the pay_rate variable:

*

hours pay_rate

When we use a math expression to calculate a value, normally we want to save that value
in memory so we can use it again in the program. We do this with an assignment statement.
Program 2-14 shows an example.

Program 2-14 (simple_math.py)

0 N Ok ON >

©

10
11
12

Assign a value to the salary variable.
salary = 2500.0

Assign a value to the bonus variable.
bonus = 1200.0

Calculate the total pay by adding salary
and bonus. Assign the result to pay.
pay = salary + bonus

Display the pay.
print('Your pay is', pay)

Program Output
Your pay is 3700.0

2.7 Performing Calculations

Line 2 assigns 2500.0 to the salary variable, and line 5 assigns 1200.0 to the bonus vari-
able. Line 9 assigns the result of the expression salary + bonus to the pay variable. As you
can see from the program output, the pay variable holds the value 3700.0.

In the Spotlight: @

Calculating a Percentage

If you are writing a program that works with a percentage, you have to make sure that
the percentage’s decimal point is in the correct location before doing any math with the
percentage. This is especially true when the user enters a percentage as input. Most users
enter the number 50 to mean 50 percent, 20 to mean 20 percent, and so forth. Before you
perform any calculations with such a percentage, you have to divide it by 100 to move its
decimal point two places to the left.

Let’s step through the process of writing a program that calculates a percentage. Suppose
a retail business is planning to have a storewide sale where the prices of all items will be
20 percent off. We have been asked to write a program to calculate the sale price of an item
after the discount is subtracted. Here is the algorithm:

1. Get the original price of the item.

2. Calculate 20 percent of the original price. This is the amount of the discount.
3. Subtract the discount from the original price. This is the sale price.

4. Display the sale price.

In step 1, we get the original price of the item. We will prompt the user to enter this data
on the keyboard. In our program we will use the following statement to do this. Notice the
value entered by the user will be stored in a variable named original_price.

original_price = float(input("Enter the item's original price: "))

In step 2, we calculate the amount of the discount. To do this, we multiply the original price
by 20 percent. The following statement performs this calculation and assigns the result to
the discount variable:

discount = original_price * 0.2

In step 3, we subtract the discount from the original price. The following statement does
this calculation and stores the result in the sale_price variable:

sale_price = original_price - discount
Last, in step 4, we will use the following statement to display the sale price:
print('The sale price is', sale_price)

Program 2-15 shows the entire program, with example output.

Program 2-15 (sale_price.py)

1 # This program gets an item's original price and
2 # calculates its sale price, with a 20% discount.
3

(program continues)

78

Chapter 2 Input, Processing, and Output

Program 2-15 (continued)

4

o N o O

9
10
11
12
13
14

Get the item's original price.
original_price = float(input("Enter the item's original price: "))

Calculate the amount of the discount.
discount = original_price * 0.2

Calculate the sale price.
sale_price = original_price - discount

Display the sale price.
print('The sale price is', sale_price)

Program Output (with input shown in bold)

Enter the item's original price: 100.00 (Enter)
The sale price is 80.0

Floating-Point and Integer Division

Notice in Table 2-3 that Python has two different division operators. The / operator per-
forms floating-point division, and the / / operator performs integer division. Both operators
divide one number by another. The difference between them is that the / operator gives
the result as a floating-point value, and the // operator gives the result as a whole number.
Let’s use the interactive mode interpreter to demonstrate:

>>> 5 | 2 (Enter]
2.5
>>>

In this session, we used the / operator to divide 5§ by 2. As expected, the result is 2.5. Now
let’s use the // operator to perform integer division:

>>> 5 [/ 2
2
>>>

As you can see, the result is 2. The // operator works like this:

e When the result is positive, it is truncated, which means that its fractional part is
thrown away.
e When the result is negative, it is rounded away from zero to the nearest integer.

The following interactive session demonstrates how the // operator works when the result
is negative:

>>> -5 /] 2

-3

>>>

2.7 Performing Calculations

Operator Precedence

You can write statements that use complex mathematical expressions involving several
operators. The following statement assigns the sum of 17, the variable x, 21, and the vari-
able y to the variable answer:

answer = 17 + x + 21 + vy
Some expressions are not that straightforward, however. Consider the following statement:
outcome = 12.0 + 6.0 / 3.0

What value will be assigned to outcome? The number 6.0 might be used as an operand
for either the addition or division operator. The outcome variable could be assigned
either 6.0 or 14.0, depending on when the division takes place. Fortunately, the answer
can be predicted because Python follows the same order of operations that you learned
in math class.

First, operations that are enclosed in parentheses are performed first. Then, when two
operators share an operand, the operator with the higher precedence is applied first. The
precedence of the math operators, from highest to lowest, are:

* *

1. Exponentiation:
2. Multiplication, division, and remainder: * / // %
3. Addition and subtraction: + -

Notice the multiplication (*), floating-point division (/), integer division (/ /), and remain-
der (%) operators have the same precedence. The addition (+) and subtraction (=) operators
also have the same precedence. When two operators with the same precedence share an
operand, the operators execute from left to right.

Now, let’s go back to the previous math expression:
outcome = 12.0 + 6.0 / 3.0

The value that will be assigned to outcome is 14.0 because the division operator has a
higher precedence than the addition operator. As a result, the division takes place before
the addition. The expression can be diagrammed as shown in Figure 2-9.

Figure 2-9 Operator precedence

outcome = 12.0 + 6.0 / 3.0

outcome = 12.0 + 2.0

outcome = 14.0

Table 2-4 shows some other sample expressions with their values.

79

80 Chapter 2 Input, Processing, and Output

Table 2-4 Some expressions

Expression Value
5+ 2 * 4 13
10/ 2 - 3 2.0
8 +12 * 2 - 4 28
6 -3 *2+7-1 6

<&

NOTE: There is an exception to the left-to-right rule. When two ** operators share
an operand, the operators execute right-to-left. For example, the expression 2**3**4
is evaluated as 2** (3**4).

Grouping with Parentheses

Parts of a mathematical expression may be grouped with parentheses to force some opera-
tions to be performed before others. In the following statement, the variables a and b are
added together, and their sum is divided by 4:

result = (a + b) / 4

Without the parentheses, however, b would be divided by 4 and the result added to a.
Table 2-5 shows more expressions and their values.

Table 2-5 More expressions and their values

Expression Value
(5+2) * 4 28
10 / (5 - 3) 5.0
8 + 12 * (6 - 2) 56
(6 -3) * (2+7) /3 9.0

In the Spotlight: @

Calculating an Average

Determining the average of a group of values is a simple calculation: add all of the values
then divide the sum by the number of values. Although this is a straightforward calculation,
it is easy to make a mistake when writing a program that calculates an average. For exam-
ple, let’s assume that the variables a, b, and ¢ each hold a value and we want to calculate
the average of those values. If we are careless, we might write a statement such as the fol-
lowing to perform the calculation:

average = a + b + ¢ / 3.0

Can you see the error in this statement? When it executes, the division will take place first.
The value in ¢ will be divided by 3, then the result will be added to a + b. That is not
the correct way to calculate an average. To correct this error, we need to put parentheses
around a + b + ¢, as shown here:

average = (a + b + c) / 3.0

2.7 Performing Calculations 81

Let’s step through the process of writing a program that calculates an average. Suppose you
have taken three tests in your computer science class, and you want to write a program that
will display the average of the test scores. Here is the algorithm:

1. Get the first test score.

Get the second test score.

Get the third test score.

Calculate the average by adding the three test scores and dividing the sum by 3.
Display the average.

SSRGS

In steps 1, 2, and 3 we will prompt the user to enter the three test scores. We will store those
test scores in the variables test1, test2, and test3. In step 4, we will calculate the average
of the three test scores. We will use the following statement to perform the calculation and
store the result in the average variable:

average = (test1 + test2 + test3) / 3.0

Last, in step 5, we display the average. Program 2-16 shows the program.

Program 2-16 (test_score_average.py)

1 # Get three test scores and assign them to the

2 # test1, test2, and test3 variables.

3 testl = float(input('Enter the first test score: "))
4 test2 = float(input('Enter the second test score: '))
5 test3 = float(input('Enter the third test score: "))
6

7

8

Calculate the average of the three scores
and assign the result to the average variable.
9 average = (test1 + test2 + test3) / 3.0
10
11 # Display the average.
12 print('The average score is', average)

Program Output (with input shown in bold)

Enter the first test score: 90 (Enter)
Enter the second test score: 80 (Enter)
Enter the third test score: 100 (Enter)
The average score is 90.0

The Exponent Operator

Two asterisks written together (**) is the exponent operator, and its purpose is to raise a
number to a power. For example, the following statement raises the 1ength variable to the
power of 2 and assigns the result to the area variable:

area = length**2

82 Chapter 2 Input, Processing, and Output

The following session with the interactive interpreter shows the values of the expressions
4**2, 5**3 and 2**10:

>>> 4**2

16

>>> 5**3
125

>>> 2**1(Q
1024

>>>

The Remainder Operator

In Python, the % symbol is the remainder operator. (This is also known as the modulus
operator.) The remainder operator performs division, but instead of returning the quotient,
it returns the remainder. The following statement assigns 2 to Teftover:

Teftover = 17 % 3

This statement assigns 2 to leftover because 17 divided by 3 is 5 with a remainder of 2.
The remainder operator is useful in certain situations. It is commonly used in calculations
that convert times or distances, detect odd or even numbers, and perform other special-
ized operations. For example, Program 2-17 gets a number of seconds from the user, and
it converts that number of seconds to hours, minutes, and seconds. For example, it would
convert 11,730 seconds to 3 hours, 15 minutes, and 30 seconds.

Program 2-17 (time_converter.py)

0 N O ON -

©

10
11
12
13
14
15
16
17

Get a number of seconds from the user.
total_seconds = float(input('Enter a number of seconds: '))

Get the number of hours.
hours = total_seconds // 3600

Get the number of remaining minutes.
minutes = (total_seconds // 60) % 60

Get the number of remaining seconds.
seconds = total_seconds % 60

Display the results.

print('Here is the time 1in hours, minutes, and seconds:')
print('Hours:', hours)

print('Minutes:', minutes)

print('Seconds:', seconds)

Program Output (with input shown in bold)

Enter a number of seconds: 11730
Here is the time in hours, minutes, and seconds:

Hours
Minut
Secon

2.7 Performing Calculations

;3.0
es: 15.0
ds: 30.0

Let’s take a closer look at the code:

e Line 2 gets a number of seconds from the user, converts the value to a float, and
assigns it to the total_seconds variable.

e Line 5 calculates the number of hours in the specified number of seconds. There are
3600 seconds in an hour, so this statement divides total_seconds by 3600. Notice
we used the integer division operator (/ /) operator. This is because we want the num-
ber of hours with no fractional part.

e Line 8 calculates the number of remaining minutes. This statement first uses the //
operator to divide total_seconds by 60. This gives us the total number of minutes.
Then, it uses the % operator to divide the total number of minutes by 60 and get the
remainder of the division. The result is the number of remaining minutes.

e Line 11 calculates the number of remaining seconds. There are 60 seconds in a min-
ute, so this statement uses the % operator to divide the total_seconds by 60 and get
the remainder of the division. The result is the number of remaining seconds.

e Lines 14 through 17 display the number of hours, minutes, and seconds.

Converting Math Formulas to Programming Statements

You probably remember from algebra class that the expression 2xy is understood to mean
2 times x times y. In math, you do not always use an operator for multiplication. Python,
as well as other programming languages, requires an operator for any mathematical oper-
ation. Table 2-6 shows some algebraic expressions that perform multiplication and the
equivalent programming expressions.

Table 2-6 Algebraic expressions

Algebraic Expression Operation Being Performed Programming Expression
6B 6 times B 6 * B

(3)(12) 3 times 12 3+ 12

4xy 4 times x times y 4 * x *y

When converting some algebraic expressions to programming expressions, you may have
to insert parentheses that do not appear in the algebraic expression. For example, look at
the following formula:

(o)

To convert this to a programming statement, a + b will have to be enclosed in parentheses:
x = (a+ b)lc

Table 2-7 shows additional algebraic expressions and their Python equivalents.

83

84

Chapter 2 Input, Processing, and Output

Table 2-7 Algebraic and programming expressions

Algebraic Expression Python Statement
. y =3 *x/ 2
y 2
z=3bc+4 z=3%"b*c+ 4
a=Xr2 a=(x+2) / (b-1)
= = X -
b —1

In the Spotlight: @

Converting a Math Formula to a
Programming Statement

Suppose you want to deposit a certain amount of money into a savings account and leave it
alone to draw interest for the next 10 years. At the end of 10 years, you would like to have
$10,000 in the account. How much do you need to deposit today to make that happen? You
can use the following formula to find out:

The terms in the formula are as follows:

P is the present value, or the amount that you need to deposit today.

F is the future value that you want in the account. (In this case, F is $10,000.)
7 is the annual interest rate.

7 is the number of years that you plan to let the money sit in the account.

It would be convenient to write a computer program to perform the calculation because
then we can experiment with different values for the variables. Here is an algorithm that
Wwe can use:

1. Get the desired future value.

Get the annual interest rate.

Get the number of years that the money will sit in the account.
Calculate the amount that will have to be deposited.

Display the result of the calculation in step 4.

A 5> @O

In steps 1 through 3, we will prompt the user to enter the specified values. We will assign
the desired future value to a variable named future_value, the annual interest rate to a
variable named rate, and the number of years to a variable named years.

In step 4, we calculate the present value, which is the amount of money that we will have
to deposit. We will convert the formula previously shown to the following statement. The
statement stores the result of the calculation in the present_value variable.

present_value = future_value / (1.0 + rate)**years

In step 5, we display the value in the present_value variable. Program 2-18 shows the
program.

2.7 Performing Calculations

Program 2-18 (future_value.py)

1
2
3
4
5
6
7
8

Y
10
11
12
13
14

Get the desired future value.
future_value = float(input('Enter the desired future value: '))

Get the annual interest rate.
rate = float(input('Enter the annual interest rate: '))

Get the number of years that the money will appreciate.
years = int(input('Enter the number of years the money will grow: '))

Calculate the amount needed to deposit.
present_value = future_value / (1.0 + rate)**years

Display the amount needed to deposit.
print('You will need to deposit this amount:', present_value)

Program Output

Enter the desired future value: 10000.0 (Enter)

Enter the annual interest rate: 0.05 (Enter

Enter the number of years the money will grow: 10 (Enter)
You will need to deposit this amount: 6139.13253541

O NOTE: Unlike the output shown for this program, dollar amounts are usually rounded

to two decimal places. Later in this chapter, you will learn how to format numbers so
they are rounded to a specified number of decimal places.

Mixed-Type Expressions and Data Type Conversion

When you perform a math operation on two operands, the data type of the result will
depend on the data type of the operands. Python follows these rules when evaluating math-
ematical expressions:

e When an operation is performed on two int values, the result will be an int.

e When an operation is performed on two float values, the result will be a float.

e When an operation is performed on an int and a float, the int value will be
temporarily converted to a float and the result of the operation will be a float.
(An expression that uses operands of different data types is called a mixed-type
expression.)

The first two situations are straightforward: operations on ints produce ints, and opera-
tions on floats produce floats. Let’s look at an example of the third situation, which
involves mixed-type expressions:

my_number = 5 * 2.0

When this statement executes, the value 5 will be converted to a f1oat (5.0) then multiplied
by 2.0. The result, 10.0, will be assigned to my_number.

85

86

Chapter 2 Input, Processing, and Output

The int to float conversion that takes place in the previous statement happens implicitly.
If you need to explicitly perform a conversion, you can use either the int() or float()
functions. For example, you can use the int () function to convert a floating-point value
to an integer, as shown in the following code:

fvalue = 2.6
ivalue = int(fvalue)

The first statement assigns the value 2.6 to the fvalue variable. The second statement
passes fvalue as an argument to the int () function. The int () function returns the value
2, which is assigned to the ivalue variable. After this code executes, the fvalue variable
is still assigned the value 2.6, but the ivalue variable is assigned the value 2.

As demonstrated in the previous example, the int() function converts a floating-point
argument to an integer by truncating it. As previously mentioned, that means it throws
away the number’s fractional part. Here is an example that uses a negative number:

fvalue = -2.9
ivalue = int(fvalue)

In the second statement, the value -2 is returned from the int () function. After this code
executes, the fvalue variable references the value -2.9, and the ivalue variable references
the value -2.

You can use the float () function to explicitly convert an int to a float, as shown in the
following code:

ivalue 2
fvalue = float(ivalue)

After this code executes, the ivalue variable references the integer value 2, and the fvalue
variable references the floating-point value 2.0.

Breaking Long Statements into Multiple Lines

Most programming statements are written on one line. If a programming statement is too
long, however, you will not be able to view all of it in your editor window without scrolling
horizontally. In addition, if you print your program code on paper and one of the state-
ments is too long to fit on one line, it will wrap around to the next line and make the code
difficult to read.

Python allows you to break a statement into multiple lines by using the line continuation
character, which is a backslash (\). You simply type the backslash character at the point
you want to break the statement, then press the Enter key.

For example, here is a statement that performs a mathematical calculation and has been
broken up to fit on two lines:

result = vart * 2 + var2 * 3 + \
var3 * 4 + var4 * 5

The line continuation character that appears at the end of the first line tells the interpreter
that the statement is continued on the next line.

2.8 String Concatenation

Python also allows you to break any part of a statement that is enclosed in parentheses
into multiple lines without using the line continuation character. For example, look at the
following statement:

print("Monday's sales are", monday,
"and Tuesday's sales are", tuesday,
"and Wednesday's sales are", wednesday)

The following code shows another example:

total = (valuel + value2 +
value3 + valued4 +
valueb + valueb)

') Checkpoint

2.19 Complete the following table by writing the value of each expression in the Value
column:

Expression Value
6 +3 *5

12 / 2 - 4

9+ 14 * 2 -6
(6 + 2) * 3

14 1 (11 - 4)

9 + 12 * (8 - 3)

2.20 What value will be assigned to result after the following statement executes?
result = 9 // 2

2.21 What value will be assigned to result after the following statement executes?
result = 9 % 2

—
2.8 String Concatenation

1 CONCEPT: String concatenation is the appending of one string to the end of another.

A common operation that performed on strings is concatenation, which means to append
one string to the end of another string. In Python, we use the + operator to concatenate
strings. The + operator produces a string that is the combination of the two strings used as
its operands. The following interactive session shows an example:

>>> message = 'Hello ' + 'world'
>>> print(message)

Hello world

>>>

87

88

Chapter 2 Input, Processing, and Output

The first statement combines the strings 'Hello ' and 'world' to produce the string
'"Hello world'. The string 'Hello world"' is then assigned to the message variable. The
second statement displays the string.

Program 2-19 further demonstrates string concatenation.

Program 2-19 (concatenation.py)

1
2
3
4
5
6
7
8
9

This program demonstrates string concatenation.
first_name = input('Enter your first name: ')
last_name = input('Enter your last name: ')

Combine the names with a space between them.
full_name = first_name + ' ' + last_name

Display the user's full name.
print('Your full name is ' + full_name)

Program Output (with input shown in bold)

Enter your first name: Alex
Enter your last name: Morgan
Your full name is Alex Morgan

Let’s take a closer look at the program. Lines 2 and 3 prompt the user to enter his or her
first and last names. The user's first name is assigned to the first_name variable and the
user's last name is assigned to the 1ast_name variable.

Line 6 assigns the result of a string concatenation to the full_name variable. The string
that is assigned to the ful1_name variable begins with the value of the first_name vari-
able, followed by a space (' '), followed by the value of the Tast_name variable. In the
example program output, the user entered Alex for the first name and Morgan for the last
name. As a result, the string 'Alex Morgan' was assigned to the ful1_name variable. The
statement in line 9 displays the value of the ful1_name variable.

String concatenation can be useful for breaking up a string literal so a lengthy call to the
print function can span multiple lines. Here is an example:

print('Enter the amount of ' +
'sales for each day and ' +
'press Enter.')

This statement will display the following:

Enter the amount of sales for each day and press Enter.

